Skip to main content
Log in

Bohr’s Radius for Polynomials in One Complex Variable

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

We consider complex polynomials of degree n that are bounded by one in the unit disc and give estimates on the size of the radius R n of the disc where the sum of the moduli of the individual terms of the polynomial is less than one. We find that there are positive constants C 1, C 2 such that

$$C_1 \frac{1} {{3^{{n \mathord{\left/ {\vphantom {n 2}} \right. \kern-\nulldelimiterspace} 2}} }} < R_n - \frac{1} {3} < C_2 \frac{{\log n}} {n}.$$

This result generalizes the celebrated theorem of Harald Bohr to polynomials of degree n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Aizenberg, Multidimensional analogues of Bohr’s theorem on power series, Proc. Am. Math. Soc. 128 no.4 (2000), 1147–1155.

    Article  MathSciNet  MATH  Google Scholar 

  2. L. Aizenberg, A. Aytuna and P. Djakov, Generalization of a theorem of Bohr for bases in spaces of holomorphic functions of several complex variables, J. Math. Anal. Appl. 258 no.2 (2001), 429–447.

    Article  MathSciNet  MATH  Google Scholar 

  3. L. Aizenberg, A. Aytuna and P. Djakov, An abstract approach to Bohr’s phenomenon, Proc. Am. Math. Soc. 128 no.9 (2000), 2611–2619.

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Beneteau and B. Korenblum. Some coefficient estimates for H p functions, to appear in Complex Analysis and Dynamical Systems, Israel Mathematical Conference Proceedings 16.

  5. C. Beneteau, A. Dahlner and D. Khavinson, Remarks on the Bohr phenomenon, Comput. Methods Funct. Theory 4 no.1 (2004), 1–19.

    MathSciNet  MATH  Google Scholar 

  6. H. Boas, Majorant series, J. Korean Math. Soc. 37 no.2 (2000), 321–337.

    MathSciNet  MATH  Google Scholar 

  7. H. Boas and D. Khavinson, Bohr’s power series theorem in several variables, Proc. Am. Math. Soc. 125 no.10 (1997), 2975–2979.

    Article  MathSciNet  MATH  Google Scholar 

  8. H. Bohr, A theorem concerning power series, Lond. M. S. Proc. (2) 13 (1913), 1–5.

    Article  MathSciNet  Google Scholar 

  9. A. Defant and L. Frerick, A logarithmical lower bound for multi dimensional Bohr radii, preprint, 2004.

  10. P. G. Dixon, Banach Algebras satisfying the Von Neuman inequality, Bull. Lond. Math. Soc. 27 (1995), 359–362.

    Article  MATH  Google Scholar 

  11. V. Paulsen, G. Paupescu and D. Singh, On Bohr’s inequality, Proc. Lond. Math. Soc., III. Ser. 85 no.2 (2002), 493–512.

    Article  MATH  Google Scholar 

  12. Q. I. Rahman, Inequalities concerning polynomials and trigonometric polynomials, J. Math. Anal. Appl. 6 (1963), 303–324.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. G. Van der Corput and C. Visser, trigonometric polynomials, Nederl. Akad. Wet., Proc. 49 (1946), 383–392; Indag. Math. 8 (1946), 238–247.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdeňka Guadarrama.

Additional information

This work was supported in part by the NSF grant DMS-0139008 (PI-D.Khavinson).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guadarrama, Z. Bohr’s Radius for Polynomials in One Complex Variable. Comput. Methods Funct. Theory 5, 143–151 (2005). https://doi.org/10.1007/BF03321091

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03321091

Keywords

2000 MSC

Navigation