Skip to main content
Log in

Taylor Coefficients of Negative Powers of Schlicht Functions

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

Let \(\cal S\) denote the class of normalized schlicht functions in the unit disk. We consider for f\({\cal S}\) and λ < 0 the Taylor coefficients a n (λ, f) of (f(z)/z)λ and prove that ∣a n(λ, f)∣ ≤ ∣a n(λ, k)∣ for every fS and every 1 ≤ n ≤ − λ + 1, where k(z) = z(lz)−2 is the Koebe function. We also give a necessary condition such that the Koebe function maximizes the functional

$$\sum_{k=1}^n \sigma_k \mid a_k(\lambda,f) \mid^2$$

in the class \({\cal S}\) for given weights σk ∈ R. These results supplement and complement previous results due to de Branges, Hayman and Hummel and others. Our proofs are based on the Löwner differential equation combined with optimal control methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Belov, Examples of trigonometric series with non-negative partial sums, Mat. Sb. 186 (1995) no. 4, 485–510.

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Bertilsson, Coefficient estimates for negative powers of derivatives of univalent functions, Ark. Mat. 36 (1998), 255–273.

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Bertilsson, On Brennan’s conjecture in conformal mapping, Doctoral Thesis, Department of Mathematics, Royal Institute of Technology, Stockholm, 1999.

    Google Scholar 

  4. L. de Branges, A proof of the Bieberbach conjecture, Acta Math. 154 (1985), 137–152.

    Article  MathSciNet  MATH  Google Scholar 

  5. L. de Branges, Powers of Riemann mapping functions, in: The Bieberbach Conjecture, Proceedings of the Smyposium on the Occasion of its Proof, Purdue University, 1985, A. Baernstein II, D. Drasin, P. Duren and A. Marden, eds., Amer. Math. Soc., Providence 1986, 51–67.

    Chapter  Google Scholar 

  6. L. de Branges, Underlying concepts in the proof of the Bieberbach conjecture, Proceedings of the ICM 1986, Berkeley, California (1986), 25–42.

  7. M. Fekete and G. Szegő, Eine Bemerkung ubër ungerade schlichte Funktionen, J. London Math. Soc. 8 (1933), 85–89.

    Article  Google Scholar 

  8. S. Friedland and M. M. Schiffer, On coefficient regions of univalent functions, J. Analyse Math. 31 (1977), 125–168.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. W. Goodman, Univalent Functions, Vol. I, Mariner Publishing Co., Tampa, Florida 1983.

    MATH  Google Scholar 

  10. A. Z. Grinsphan, On the power stability for the Bieberbach inequality, Analytic Number Theory and the Theory of Functions, 5, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 125 (1983), 58–64.

    MathSciNet  Google Scholar 

  11. P. Henrici, Applied Computational Complex Analysis, Vol. 1, John Wiley and Sons, New York 1974.

    MATH  Google Scholar 

  12. W. K. Hayman and J. A. Hummel, Coefficients of powers of univalent functions, Complex Variables 7 (1986), 51–70.

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Klouth and K.-J. Wirths, Two new extremal properties of the Koebe-Function, Proc. Amer. Math. Soc. 80 (1980), 594–596.

    Article  MathSciNet  MATH  Google Scholar 

  14. K. Löwner, Untersuchungen ubër schlichte konforme Abbildungen des Einheitskreises. I, Math. Ann. 89 (1923), 103–121.

    Article  MathSciNet  MATH  Google Scholar 

  15. Ch. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, Göttingen 1975.

    MATH  Google Scholar 

  16. J. Roynyak, Coefficient estimates for Riemann mapping functions, J. Analyse Math. 52 (1989), 53–93.

    Article  MathSciNet  Google Scholar 

  17. E. Schippers, Distortion theorems for higher order Schwarzian derivatives of univalent functions, Proc. Amer. Math. Soc. 128 (2000) no. 11, 3241–3249.

    Article  MathSciNet  MATH  Google Scholar 

  18. V. I. Vasyunin and N. K. Nikol’skič, Operator-valued measures and coefficients of univalent functions, St. Petersburg Math. J. 3 (1992), 1199–1270.

    MathSciNet  Google Scholar 

  19. K.-J. Wirths, A short proof of a theorem of Bertilsson by direct use of Löwner’s method, Ark. Mat. 39 (2001), 395–398.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Roth.

Additional information

The first author was supported by an INTAS grant (project 99-00089).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roth, O., Wirths, KJ. Taylor Coefficients of Negative Powers of Schlicht Functions. Comput. Methods Funct. Theory 1, 521–533 (2001). https://doi.org/10.1007/BF03321005

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03321005

Keywords

2000 MSC

Navigation