Skip to main content
Log in

Shielding Gas Oxygen Additions as a Means of Curbing Nitrogen Degassing During the Autogenous Arc Welding of Nitrogen-Alloyed Stainless Steel

  • Technical Papers
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

This study examined the influence of oxygen additions (0.5% to 2.0%) to argon-rich shielding gas on nitrogen degassing during the autogenous arc welding of a high-manganese nitrogen-alloyed austenitic stainless steel, previously commercially available under the trade name of Cromanite. Autogenous arc welding of this steel in inert shielding gas results in considerable nitrogen losses from the weld pool, characterised by an unstable arc, spattering and violent metal expulsion from the weld pool. Oxygen additions to the shielding gas stabilise the arc and curb nitrogen-induced porosity, but at least 2.0% oxygen (by volume) is required to maintain the weld metal nitrogen content at the level of the parent material prior to welding. The beneficial effect of oxygen additions to the shielding gas is attributed to the formation of a solid MnCr2O4 spinel phase on the weld pool surface during welding, which retards nitrogen degassing by reducing the area available for the adsorption of nitrogen atoms prior to their recombination to form N2. This layer has a granular, irregular appearance and presents a less effective barrier to nitrogen degassing than the continuous, uniform liquid slag layer that forms when the Cr-Ni 300-series austenitic stainless steels are welded in oxygen-containing shielding gas mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Speidel M.O., Uggowitzer P.J.: High manganese, high nitrogen austenitic stainless steels: their strength and toughness, Proceedings of the High Manganese, High Nitrogen Austenitic Stainless Steels Conference (Ohio, USA), 2–4 November 1992, ASM International, pp. 135–142.

  2. Reed R.P.: Nitrogen in austenitic stainless steels, JOM, March 1989, pp. 16–21.

  3. Zackay V.F., Carlson J.F., Jackson P.L.: High nitrogen austenitic Cr-Mn steels, Transactions of the American Society for Metals, 1956, 8, pp. 508–525.

    Google Scholar 

  4. Okagawa R.K., Dixon R.D., Olson D.L.: The influence of nitrogen from welding on stainless steel weld metal microstructures, Welding Journal, 1983, 62, 8, pp. 204–s–209–s.

    Google Scholar 

  5. Franks R., Binder W.O., Thompson J.: Austenitic chromium-manganese-nickel steels containing nitrogen, Transactions of the American Society for Metals, 1955, 47, pp. 231–266.

    Google Scholar 

  6. Janik-Czachor M., Lunarska E., Szklarska-Smialowska Z.: Effect of nitrogen content in a 18Cr-5Ni-10 Mn stainless steel on the pitting susceptibility in chloride solutions, Corrosion, 1975, 31, 11, pp. 394–398.

    Article  CAS  Google Scholar 

  7. Ogawa T., Aoki S., Sakamoto T., Zaizen T.: The weldability of nitrogen-containing austenitic stainless steel: Part I — Chloride pitting corrosion resistance, Welding Journal, 1982, 6, 5, pp. 139–148.

    Google Scholar 

  8. Mozhi T.A., Clark W.A.T., Nishimoto K., Johnson W.B., MacDonald D.D.: The effect of nitrogen on the sensitisation of AISI 304 stainless steel, Corrosion, 1985, 41, 10, pp. 555–559.

    Article  CAS  Google Scholar 

  9. Beneke R., Sandenbergh R.F.: The influence of nitrogen and molybdenum on the sensitisation properties of low-carbon austenitic stainless steels, Corrosion Science, 1989, 29, 5, pp. 543–555.

    Article  CAS  Google Scholar 

  10. Du Toit M., Pistorius P.C.: Nitrogen control during the autogenous arc welding of stainless steel — Part 1: Experimental observations, Welding Journal, 2003, 82, 8, pp. 219–224.

    Google Scholar 

  11. Du Toit M., Pistorius P.C.: Nitrogen control during the autogenous arc welding of stainless steel — Part 2: A kinetic model for nitrogen absorption and desorption, Welding Journal, 2003, 82, 9, pp. 231–237.

    Google Scholar 

  12. Du Toit M., Pistorius P.C.: The influence of oxygen on the nitrogen content of autogenous stainless steel arc welds, Welding Journal, 2007, 86, 8, pp. 222s–230s.

    Google Scholar 

  13. Lancaster J.F.: Metallurgy of welding, Abington Publishing, 1999, Cambridge.

    Book  Google Scholar 

  14. Ogawa T., Suzuki K., Zaizen T.: The weldability of nitrogen-containing austenitic stainless steel: Part II — Porosity, cracking and creep properties, Welding Journal, 1984, 63, 7, pp. 213s–223s.

    Google Scholar 

  15. Blake P.D.: Nitrogen in steel weld metals, Metal Construction, 1979, pp. 196–197.

  16. Uda M., Ohno S.: Effect of surface active elements on nitrogen content of iron under arc melting, Transactions of the National Research Institute of Metallurgy, 1973, 15, 1, pp. 20–28.

    Google Scholar 

  17. Hooijmans J.W., Den Ouden G.: The influence of oxygen on nitrogen absorption during arc melting of iron, Welding Journal, 1992, 71, 10, pp. 377s–380s.

    Google Scholar 

  18. Palmer T.A., DebRoy T.: Enhanced dissolution of nitrogen during gas tungsten arc welding of steels, Science and Technology of Welding and Joining, 1998, 3, 4, pp. 190–203.

    Article  CAS  Google Scholar 

  19. Katz J.D., King T.B.: The kinetics of nitrogen absorption and desorption from a plasma arc by molten iron, Metallurgical Transactions B, 1989, 20B, 2, pp. 175–185.

    CAS  Google Scholar 

  20. Bandopadhyay A., Banerjee A., DebRoy T.: Nitrogen activity determination in plasmas, Metallurgical and Materials Transactions B, 1992, 23B, 2, pp. 207 to 214.

    CAS  Google Scholar 

  21. Mundra K., DebRoy T.: A general model for partitioning of gases between a metal and its plasma environment, Metallurgical and Materials Transactions B, 1995, 26B, 1, pp. 149–157.

    Article  CAS  Google Scholar 

  22. Palmer T.A., DebRoy T.: Physical modeling of nitrogen partition between the weld metal and its plasma environment, Welding Journal, 1996, 75, 7, pp. 197–s–207–s.

    Google Scholar 

  23. Lu S., Fujii H., Nogi K.: Marangoni convection and weld shape variations in Ar-O2 and Ar-CO2 shielded GTA welding, Materials Science and Engineering A, 2004, 380, pp. 290–297.

    Article  Google Scholar 

  24. Lu S., Fujii H., Nogi K.: Influence of welding parameters and shielding gas composition on GTA weld shape, ISIJ International, 2005, 45, 1, pp. 66–70.

    Article  CAS  Google Scholar 

  25. Lu S., Fujii H., Nogi K.: Weld shape comparison with iron oxide flux and Ar-O2 shielding gas in gas tungsten arc welding, Science and Technology of Welding and Joining, 2004, 9, 3, pp. 272–276.

    Article  CAS  Google Scholar 

  26. Lu S., Fujii H., Tanaka M., Nogi K.: Effects of welding parameters on the weld shape in Ar-O2 and Ar-CO2 shielded GTA welding, IIW Document XII-1801–04, 2004.

  27. Lu S., Fujii H., Sugiyama H., Tanaka M., Nogi K.: Effects of oxygen additions to argon shielding gas on GTA weld shape, ISIJ International, 2003, 43, 10, pp. 1590–1595.

    Article  CAS  Google Scholar 

  28. Uda M., Ohno S.: Spattering phenomenon for iron-nitrogen system during arc melting, Transactions of the National Research Institute of Metallurgy, 1978, 20, 6, pp. 16–23.

    Google Scholar 

  29. Wada H., Pehlke R.D.: Solubility of nitrogen in liquid Fe-Cr-Ni alloys containing manganese and molybdenum, Metallurgical Transactions B, 1977, 8B, pp. 675–682.

    CAS  Google Scholar 

  30. Bale C.W., Chartrand P., Degterov S.A., Eriksson G., Hack K., Ben Mahfoud R., Melançon J., Pelton A.D., Petersen S.: FactSage Thermochemical Software and Databases, Calphad, 2002, 26, 2 pp. 189–228.

    Article  CAS  Google Scholar 

  31. Zacharia S.A., David J.M., Vitek J.M., DebRoy T.: Weld pool development during GTA and laser beam welding of type 304 stainless steel. I. Theoretical analysis, Welding Journal, 1989, 68, 12, pp. 499–s–509–s.

    Google Scholar 

  32. Jung I.-H., Decterov S.A., Pelton, A.D.: A thermodynamic model for deoxidation equilibria in steel, Metallurgical and Materials Transactions B, 2004, 35B, pp. 493–508.

    Article  CAS  Google Scholar 

  33. Tanahashi M., Furuta N., Yamauchi C., Fujisawa T.: Phase equilibria of the MnO-SiO2-CrOx system at 1873 K under controlled oxygen partial pressure, ISIJ International, 2001, 41, pp. 1309–1315.

    Article  CAS  Google Scholar 

  34. Jung I.-H.: Critical evaluation and thermodynamic modeling of the Mn-Cr-O system for the oxidation of SOFC interconnect, Solid State Ionics, 2006, 177, pp. 765–777.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du Toit, M., Pistorius, P.C. Shielding Gas Oxygen Additions as a Means of Curbing Nitrogen Degassing During the Autogenous Arc Welding of Nitrogen-Alloyed Stainless Steel. Weld World 53, 38–47 (2009). https://doi.org/10.1007/BF03266690

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03266690

IIW-Thesaurus keywords

Navigation