Skip to main content
Log in

Accumulation of Capsaicin in Seed, Pericarp and Placenta of Capsicum annuum L Fruit

  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The accumulation of capsaicin in different parts of fruit viz, placenta, pericarp and seeds of Capsicum annuum L cv Punjab Lal was compared with the activities of first four enzymes of capsaicin biosynthetic pathway at various physiological stages. Capsaicin accumulation (mg g−1 DW) was about ten fold higher in placenta (63.96), than in pericarp (7.12) and seeds (5.06) in ripe fruits. Capsaicin accumulation was 5.79 mg g−1 DW at 28 DAF in whole fruit. The specific activity of PAL was also ten times higher in placenta, whereas the specific activities of Ca4H, Ca3H and CaOMT were about two times higher in placenta than in other parts of fruit. The trend CaOMT > PAL > Ca4H > Ca3H was observed with peak activity at 28 DAF for Ca3H and CaOMT and at 35 DAF for PAL and Ca4H in placenta. These four enzymes showed low activity during the period up to 21 DAF, and peak activities for these enzymes were obtatined at the time of maximum growth of fruit in length and thereafter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DAF:

Days after flowering

PAL:

Phenylalanine ammonia lyase

Ca4H:

Cinnamic acid-4-hydroxylase

Ca3H:

p-Coumaric acid-3-hydroxylase

CaOMT:

Caffeic acid-O-methyl transferase

DW:

Dry weight

FW:

Fresh weight

References

  1. Turner H, Fleig A, Stokes A, Kinet JP & Penner R, Biochem J, 371 (2003) 341.

    Article  PubMed  CAS  Google Scholar 

  2. Milic BL & Milic NB, Phytotherap Res, 12 (1998) 53.

    Article  Google Scholar 

  3. Michael JC, Schumacher MA, Tominaga M, Rosen TA, Levine JD & Jullus D, Nature 389 (1998) 816.

    Google Scholar 

  4. Charles S, Kang BC, Liu K, Mazourek M, Moore SL, Yoo EY, Kim BD, Paran J & Jahn MM, The Plant J, 42 (2005) 675.

    Article  Google Scholar 

  5. Estrada B, Bernal AA, Diaz J, Pomar F & Merino F, J Agric Food Chem, 48 (2000) 6234.

    Article  PubMed  CAS  Google Scholar 

  6. Ye Z, Zhong R, Morrison WH & Himmelsbach DS, Phytochem, 57 (2001) 1177.

    Article  CAS  Google Scholar 

  7. Mulabagal V & Tsay HS, Int J Appl Sci Eng, 2 (2004) 29.

    Google Scholar 

  8. Bennett DJ & Kirby GW, J Chem Soc C, (1968) 442.

    Google Scholar 

  9. Iwai K, Suzuki T & Fujiwake H, Agr Biol Chem, 43 (1979) 2493.

    Article  CAS  Google Scholar 

  10. Holden MA, Hall RD & Yeoman MM, Biochem Soc Trans, 16 (1988) 66.

    CAS  Google Scholar 

  11. Varindra P, Salida S, Randhawa R, Bajaj KL, & Gosal SS, Plant Tiss Cult, 7 (1997) 47.

    Google Scholar 

  12. Kim KW, Varindra P, Cho KJ, Kim JG & Lee SW, Agric Chem Biotech, 43 (2000) 152.

    CAS  Google Scholar 

  13. Fujiwake H, Suzuki T & Iwai K, Agric Biol Chem, 46 (1982) 2685.

    Article  CAS  Google Scholar 

  14. Ochoa-Alejo N & Gomez-Peralta, J Plant Physiol, 141 (1993) 147.

    Article  CAS  Google Scholar 

  15. Prasad BCN, Kumar V, Gururaj HB, Parimalan R, Giridhar P & Ravishankar GA, PNAS, 103 (2006) 13315

    Article  PubMed  Google Scholar 

  16. Kim M, Kim S, Kim S & Ki BD, Mol Cells, 11 (2001) 213.

    PubMed  CAS  Google Scholar 

  17. Blum E, Mazourek M & O’Connell M, Theor & Appl Gen, 108 (2003) 79.

    Article  CAS  Google Scholar 

  18. Rajpoot NC & Govindarajan VS, J Assoc Off Anal Chem, 64 (1981) 311.

    CAS  Google Scholar 

  19. Lowry OH, Rosebrough NJ, Farr AL & Randall RJ, J Biol Chem, 193 (1951) 265.

    PubMed  CAS  Google Scholar 

  20. Johnson TS, Sarada R & Ravishankar GA, J Biosc, 23 (1998) 209.

    Article  CAS  Google Scholar 

  21. Sandhu R, Varindra P, Sidhu P & Gosal S S, PI Cell Biotech and Mol Bio, 4 (1–2) (2003) 63.

    CAS  Google Scholar 

  22. Hall RD, Holden MA & Yeoman MM, Plant Cell Tiss Org Cult, 8 (1987) 63.

    Article  Google Scholar 

  23. Winkel-Shirley B, Physiol Plant, 107 (1999) 49.

    Article  Google Scholar 

  24. Fujiwake H, Suzuki T, Oka S & Iwai K, Agric Biol Chem, 44 (1980) 2907.

    Article  CAS  Google Scholar 

  25. Curry J, Aluru M, Mendoza M, Nevarez J, Melendrez M & O’Connell MA, Plant Sci, 148 (1999) 47.

    Article  CAS  Google Scholar 

  26. Achnine L, Blancaflor E B, Rasmussen S & Dixon RA, Plant Cell, 16 (2004) 3098.

    Article  PubMed  CAS  Google Scholar 

  27. Sung Y, Chang YY & Ting NL, Bot Bull Acad Sin, 46 (2005) 35.

    CAS  Google Scholar 

  28. Winkel BSJ, Annu Rev Plant Biol, 55 (2004) 85.

    Article  PubMed  CAS  Google Scholar 

  29. Weisshaar B, & Jenkin GI, Curr Opin Plant Biol, 1 (1998) 251.

    Article  PubMed  CAS  Google Scholar 

  30. Salgado-Garciglia R & Ochoa-Alejo N, Plant Cell Rep, 8 (1990) 617.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varindra Pandhair.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandhair, V., Sharma, S. Accumulation of Capsaicin in Seed, Pericarp and Placenta of Capsicum annuum L Fruit. J. Plant Biochem. Biotechnol. 17, 23–27 (2008). https://doi.org/10.1007/BF03263255

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03263255

Key words

Navigation