Skip to main content
Log in

Molecular Mapping of Loci Affecting the Contents of Three Major Fatty Acids in Indian Mustard (Brassica juncea L)

  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The fatty acid constituents of mustard oil are palmitic, stearic, oleic, linoleic, linolenic and erucic acids. With the objective of mapping loci influencing the content of these fatty acids, a population of F6 generation recombinant inbred lines (RILs) derived from an inter-varietal cross of mustard was analyzed. Transgressive variation was evident for all the six fatty acids analysed irrespective of the levels of differences between the parents. The frequency distribution was normal for the linolenic acid, linoleic acid and stearic acid contents, while deviation from normality was observed for the other three fatty acids. The content of erucic acid was negatively correlated with the contents of all other fatty acids, which were positively correlated. Based on single marker analysis and interval mapping, two loci each for linoleic, linolenic and erucic acids were mapped to marker intervals on three linkage groups. Position of log of odds ratio (LOD) peaks suggested presence of common, linked and independently segregating loci for the fatty acid contents. The percentage of phenotypic variance explained by individual quantitative trait loci (QTLs) ranged from 10.5 to 19.5%, whereas the cumulative action of loci detected for different traits accounted for 16.3 to 27.6% of the variance. The additive effect for an individual locus ranged from 1.09 to 4.33. Presence of the favourable alleles at both the contributing loci in most of the RILs with a high linolenic acid content and of the unfavourable alleles in the lines with a low linolenic acid content indicated the possibility of pyramiding useful genes from phenotypically similar parental lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANOVA:

analysis of variance

LOD:

log of odds ratio

PCR:

polymerase chain reaction

QTL:

quantitative trait loci

RAPD:

random amplified polymorphic DNA

RILs:

recombinant inbred lines

References

  1. Renarid S & McGregor L, Rev Fr Crops Cros, 23 (1976) 393.

    Google Scholar 

  2. Ackman RG, Eaton CA, Sipos JC, Loew FM & Hancock D, Nutr Dieta, 25 (1977) 170.

    CAS  Google Scholar 

  3. Galliard T, In The Biochemistry of plants (PK Stumpf, Editor), Academic Press, New York (1980) pp 85–116.

    Google Scholar 

  4. Chang NW & Huang PC, Lipids, 33 (1998) 481.

    Article  PubMed  CAS  Google Scholar 

  5. Zamir D & Eshed Y, In Molecular dissection of complex traits, (AH Paterson, Editor), CRC Press, New York, (1998) pp 207–217.

    Google Scholar 

  6. Stuber CW, In Molecular dissection of complex traits (AH Paterson, Editor), CRC Press, New York, (1998) pp197–206.

    Google Scholar 

  7. Shah MM, Gill KS, Baenzinger PS, Yen Y, Kaeppler SM & Ariyarathne HM, Crop Sci, 39 (1999) 1728.

    Article  CAS  Google Scholar 

  8. Quiros CF, In Biology of Brassica coenospecies (C Gomez-Campo, Editor), Elsevier Science BV (1999) pp 217–245.

    Chapter  Google Scholar 

  9. Ecke W, Uzunova M & Weibleder K, Theor Appl Genet, 91 (1995) 972.

    Article  CAS  Google Scholar 

  10. Jourdren C, Barret P, Horvais R, Foisset N, Delourme R & Renard M, Mol Breed, 2 (1996) 61.

    Article  CAS  Google Scholar 

  11. Barret P, Delourme R, Renard M, Domergue F, Lessire R, Delseny M & Roscoe TJ, Theor Appl Genet, 96 (1998) 177.

    Article  CAS  Google Scholar 

  12. Tanhuanpää PK, Vilkki JP & Vilkki HJ, Genome, 38 (1995) 414.

    Article  PubMed  Google Scholar 

  13. Tanhuanpää PK, Vilkki JP & Vilkki HJ, Theor Appl Genet, 92 (1996) 952.

    Article  Google Scholar 

  14. Hu J, Quiros C, Arus P, Struss D & Röbbelen G, Theor Appl Genet, 90 (1995) 258.

    CAS  Google Scholar 

  15. Sharma R, Aggarwal RAK, Kumar R, Mohapatra T & Sharma RP, Genome, 45 (2002) 467.

    Article  PubMed  CAS  Google Scholar 

  16. Luddy FE, Barford RA, Herb SF & Paul M, J Am Oil Chem Soc, 45 (1968) 549.

    Article  CAS  Google Scholar 

  17. Mohapatra T, Sharma RP & Chopra VL, Curr Sci, 62 (1992) 482.

    CAS  Google Scholar 

  18. Jain, A, Bhatia S, Banga SS, Prakash S & Lakshimkumaran M, Theor Appl Genet, 88 (1994) 116.

    Article  CAS  Google Scholar 

  19. Lander ES, Green P, Abrahamson J, Barlow A, Daly M, Lincoln SE & Newburg L, Genomics, 9 (1987) 174.

    Article  Google Scholar 

  20. Lincoln S, Daly M & Lander E, Constructing genetic maps with MAPMAKER/EXP 3, Whitehead Institute Technical Report, (1992) 3rd Ed.

    Google Scholar 

  21. Kosambi DD, Ann Eugen, 12 (1944) 172.

    Google Scholar 

  22. Edwards MD, Stuber CW & Wendel JF, Genetics, 116 (1987) 113.

    PubMed  CAS  Google Scholar 

  23. Beavis WD, In Proc 49th Ann Corn Sorghum Res Conf (DB Wilkinson, Editor), Am Seed Trade Assoc, Washington DC (1994) pp 250–256.

    Google Scholar 

  24. Tuberosa R, Sanguineti MC, Landi P, Salvi S, Casarini E & Conti S, Theor Appl Genet, 97 (1998) 744.

    Article  CAS  Google Scholar 

  25. Grandillo S & Tanksley SD, Theor Appl Genet, 92 (1996) 935.

    Article  CAS  Google Scholar 

  26. Bezant J, Laurie D, Pratchett N, Chojecki J & Kearsey M, Mol Breed, 3 (1997) 29.

    Article  CAS  Google Scholar 

  27. Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, Plomion C & Monet R, Theor Appl Genet, 98 (1999) 18.

    Article  CAS  Google Scholar 

  28. Alrefai R, Berke TG & Rocheford TR, Genome, 38 (1995)

    Google Scholar 

  29. Harvey BL & Downey RK, Can J Plant Sci, 44 (1964) 104.

    Article  CAS  Google Scholar 

  30. Stefansson BR & Hougen FW, Can J Plant Sci, 44 (1964) 359.

    Article  CAS  Google Scholar 

  31. Siebel J & Pauls KP, Theor Appl Genet, 77 (1989) 489.

    Article  CAS  Google Scholar 

  32. Pleines S & Friedt W, Theor Appl Genet, 78 (1989) 793.

    Article  CAS  Google Scholar 

  33. Chen JL & Beversdorf WD, Theor Appl Genet, 80 (1990) 465.

    CAS  Google Scholar 

  34. Paterson AH, Deverna JW, Lanini B & Tanksley SD, Genetics, 28 (1990) 379.

    Google Scholar 

  35. Shrimpton AE & Robertson A, Genetics, 18 (1988) 445.

    Google Scholar 

  36. Goldman IL, Rocheford TR & Dudley JW, Theor Appl Genet, 87 (1993) 217.

    Article  CAS  Google Scholar 

  37. Tanksley SD, Annu Rev Genet, 27 (1993) 205.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Mohapatra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aggarwal, R.A.K., Sharma, R., Kumar, R. et al. Molecular Mapping of Loci Affecting the Contents of Three Major Fatty Acids in Indian Mustard (Brassica juncea L). J. Plant Biochem. Biotechnol. 12, 131–137 (2003). https://doi.org/10.1007/BF03263173

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03263173

Keywords

Navigation