Skip to main content
Log in

Nothing new under the heavens: MIH in the past?

  • Published:
European Archives of Paediatric Dentistry Aims and scope Submit manuscript

Abstract

Aim: This was to study an archaeological population of sub-adult teeth in 17th and 18th century skeletal material from a London (England) cemetery for enamel defects including molar-incisor-hypomineralisation (MIH). Methods: Dentitions of 45 sub-adults were examined using standard macroscopic methods and systematically recorded. A total of 557 teeth were examined with a *5 lens and photographed. Ages of the individuals were estimated from their dental crown and root development stages and not from charts that combine tooth eruption with development stages. The dental age of the individual and the approximate age of onset of enamel defects was then calculated on the basis of the chronological sequence of incremental deposition and calcification of the enamel matrix. Affected enamel was graded macroscopically as: — Mild: <30% of the tooth’s enamel surface area visibly disrupted (this encompasses the entire range reported in most other studies), Moderate: 31–49% of the tooth’s enamel surface area visibly disrupted and Severe: >50% of the tooth’s enamel surface area visibly disrupted. Results: Of the total number of individuals 41 (93.2%) showed signs of enamel developmental dysplasia or MIH, 28 of them showing moderate or severe lesions of molars, primary or permanent (63.6% of the sample). Incisors and canines, though surviving much less often, showed episodes of linear hypoplasia. Conclusion: The extensive lesions seen on many of the molars displayed cuspal enamel hypoplasia (CEH). Many of these teeth also exhibited Molar Incisal Hypomineralisation (MIH).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alaluusua S, Lukinmaa PL, Koskimies M, et al. Developmental dental defects associated with long breastfeeding. Eur J Oral Sci 1996;104:493–7.

    Article  PubMed  Google Scholar 

  • Alvarez JA. Nutrition, tooth development, and dental caries. Am J Clin Nutr 1995;61 supp: 410S–416S.

    PubMed  Google Scholar 

  • Beentjes VE, Weerheim KL, Groen HJ. Factors involved in the aetiology of molar-incisor hypomineralisation (MIH). Eur J Paediatr Dent 2003;3: 9–13.

    Google Scholar 

  • Bogin B. Social and economic class. In: Ulijaszek, SJ, Johnston, FE, Preece, MA, editors. The Cambridge encyclopaedia of human growth and development. Cambridge, Cambridge University Press. 1998. p 399–401.

    Google Scholar 

  • David, L. Common Vitamin D-Deficiency Rickets. In: Glorieux FH. editor. Rickets. Nestlé Nutrition Workshop Series, Vol 21. New York: Raven Press. 1991. p 107–122.

    Google Scholar 

  • Dummer PM, Kingdon A, Kingdon R. Distribution of developmental defects of tooth enamel by tooth type in 11–12 year-old children in South Wales. Comm Dent Oral Epidemiol 1986;14: 341–344.

    Article  Google Scholar 

  • Ensor BE, Irish JD. Hypoplastic area method for analysing dental enamel hypoplasia. Am J Phys Anthropol 1995;98: 507–517.

    Article  PubMed  Google Scholar 

  • Fagrell GF, Lingstrom P, Olsson S, Steininger F, Noren, JG. Bacterial invasion of dentinal tubules beneath apparently intact but hypomineralised enamel in molar teeth with molar-incisor-hypomineralisation. Int J Paediatr Dent 2008;18: 333–340.

    Article  PubMed  Google Scholar 

  • Fédération Dentaire International. 1 A review of the developmental defects of enamel index (DDE Index). Commission on Oral Health, Research & Epidemiology: Report of an FDI Working Group. Int Dent J 1992;42: 411–26.

    Google Scholar 

  • Finlay R. Population and metropolis: the demography of London 1580–1650. Cambridge: Cambridge University Press. 1981.

    Book  Google Scholar 

  • FitzGerald CM. Do enamel microstructures have regular time dependency? Conclusions from the literature and a large-scale study. J Hum Evol 1998;35:371–86.

    Article  PubMed  Google Scholar 

  • Floud R., Wachter K. Poverty and physical stature: evidence on the standard of living in London boys, 1770–1870. Soc Sci Hist 1982;6: 422–452.

    Article  Google Scholar 

  • Gautelli-Steinberg D, Lukacs JR. Interpreting sex differences in enamel hypoplasia in human and non-human primates: Developmental, environmental, and cultural considerations. Yrbk Phys Anthropol 1999;42: 78–126.

    Google Scholar 

  • Goodman AH, Rose JC. Assessment of systemic physiological perturbations from dental enamel hypoplasias and associated histological structures. Yrbk Phys Anthropol 1990;33: 59–110.

    Article  Google Scholar 

  • Harding V. The dead and the living in Paris and London 1500–1670. Cambridge: Cambridge University Press., 2002.

    Google Scholar 

  • Hargreaves JA, Cleaton-Jones PE, Williams SD. Hypocalcification and hypoplasia in permanent teeth of children from different ethnic groups in South Africa assessed with a new index. Adv Dent Res 1989;3:126–31.

    PubMed  Google Scholar 

  • Hillson S. Studies of growth in dental tissues. In: Lukacs, JR, editor. Culture, Ecology and Dental Anthropology. Journal of Human Ecology, Special Issue 2. Delhi, Kamla-Ray Enterprises, 1992, pp. 7–23.

    Google Scholar 

  • Hillson S. Teeth. 2nd edition. Cambridge: Cambridge University Press. 2005., p 169–176.

    Book  Google Scholar 

  • Hillson S, Bond S. Relationship of enamel hypoplasia to the pattern of tooth crown growth: A discussion. Am J Phys Anthropol 1997;104:89–103.

    Article  PubMed  Google Scholar 

  • Hillson S, Grigson C, Bond S. Dental defects of congenital syphilis. Am J Phys Anthropol 1998;107: 25–40.

    Article  PubMed  Google Scholar 

  • Inwood S. A history of London.: Macmillan, London., 1998.

  • Jälevik B, and Norén JG. Enamel hypomineralisation of permanent first molars: a morphological study and survey of possible aetiological factors. Int J Paediatr Dent 2000;10:278–89.

    Article  PubMed  Google Scholar 

  • Jälevik B, Klingberg G, Barregard L, Norén JG. The prevalence of demarcated opacities in permanent first molars in a group of Swedish children. Acta Odontol Scand 2001;59:255–60.

    Article  PubMed  Google Scholar 

  • Jälevik B, Dietz W, Norén JG. Scanning electron micrograph analysis of hypomineralised enamel in permanent first molars. Int J Paediatr Dent 2002;15: 233–240.

    Article  Google Scholar 

  • Jenkins GN. The physiology and biochemistry of the mouth. Oxford, Blackwell., 1978.

    Google Scholar 

  • King T, Humphrey LT, Hillson S. Linear enamel hypoplasias as indicators of systemic physiological stress: evidence from two known age-at-death and sex populations from postmedieval London. Am J Phys Anthropol 2005;128:547–59.

    Article  PubMed  Google Scholar 

  • Kunzel W. Hypomineralisation of molars and incisors. (German) Zahnärztl Mitt 2003;93:1626–9.

    Google Scholar 

  • Larsen CS. Bioarchaeological interpretations of subsistence economy and behavior from human skeletal remains. Adv Archaeol Method Theory 1987;10:339–445.

    Google Scholar 

  • Lewis ME. The impact of industrialisation: comparative study of child health in four sites from medieval and post-medieval England (850-1859). Am J Phys Anthropol 2002a;119, 211–223.

    Article  PubMed  Google Scholar 

  • Lewis ME. Urbanisation and Child Health in Medieval and Post-Medieval England. BAR British Series 339, BAR: Oxford., 2002b

    Google Scholar 

  • Mays S. The rise and fall of rickets in England. In: The environmental archaeology of industry. Murphy P, Wiltshire PEJ, editors. Oxford: Oxbow. 2003. p 144–153

    Google Scholar 

  • Mays S, Brickley M, Ives R. Skeletal Manifestations of Rickets in Infants and Young Children in an Historic Population from England. Am J Phys Anthropol 2006;129:518–528.

    Article  PubMed  Google Scholar 

  • Moorrees CFA, Fanning EA, Hunt EE. Age variation of formation stages for ten permanent teeth. J Dent Res 1963a;42,1490–1502.

    Article  PubMed  Google Scholar 

  • Moorrees CFA, Fanning EA, Hunt EE. Formation and resorption of three deciduous teeth in children. Am J Phys Anthropol 1963b;21, 205–213.

    Article  PubMed  Google Scholar 

  • Ogden A. R., Pinhasi R, White WJ. Severe Dental Enamel Hypoplasia of molars in subadultsfroma 16th–18th Century London graveyard. Amer J Physic Anthropol 2007;133: 957–966.

    Article  Google Scholar 

  • Palumbeckaite Z, Jankausas R, Boldsen J. Enamel hypoplasia in Danish and Lithuanian Late Medieval/early modern samples: A possible reflection of child morbidity and mortality patterns. Int J Osteoarch 2002;12:189–201.

    Article  Google Scholar 

  • Pinhasi R, Shaw P, White B, Ogden AR. Morbidity, rickets, and long-bone growth in post-medieval Britain — a cross-population analysis. Ann Hum Biol 2006;33: 372–389.

    Article  PubMed  Google Scholar 

  • Psoter WJ, Reid BC, Katz RV. Malnutrition and dental caries: a review of the literature. Caries Res 2005;39:441–7.

    Article  PubMed  Google Scholar 

  • Purvis RJ, Barrie WJ, MacKay GS, et al. Enamel hypoplasia of the teeth associated with neonatal tetany: a manifestation of maternal vitamin-D deficiency. Lancet 1973;2:811–4.

    Article  PubMed  Google Scholar 

  • Reid DJ, Dean MC. Variation in modern human enamel formation times. J Hum Evol 2006;50:329–46.

    Article  PubMed  Google Scholar 

  • Saunders SR, Hoppa RD, Macchiarelli R, Bondioli L. Investigating variability in human dental development in the past. Anthropologie 2000;38,101–107.

    Google Scholar 

  • Seow WK, Young WG, Tsang AK, Daley T. A study of primary dental enamel from preterm and full-term children using light and scanning electron microscopy. Pediatr Dent 2005;27:374–9.

    PubMed  Google Scholar 

  • Skinner M, Goodman AH. Anthropological uses of developmental defects in enamel. In: Saunders SR, Katzenberg MA, editors. Skeletal biology of past people: research methods. New York: Wiley-Liss. 1992., pp 153–174.

    Google Scholar 

  • Smith BH. Standards of human tooth formation and dental age assessment. In: Kelley MA, Larsen CS, editors. Advances in dental anthropology. New York: Wiley-Liss. 1991., pp 143–168.

    Google Scholar 

  • Stuart-Macadam PL. Nutritional Deficiency Diseases: A survey of scurvy, rickets, and iron-deficiency anaemia. In: Iscan MY, Kennedy KAR, editors. Reconstruction of life from the skeleton. New York: Wiley-Liss. 1989.

    Google Scholar 

  • Suckling GW. Developmental defects of enamel — historical and present-day perspectives of their pathogenesis. Adv Dent Res 1989;3: 87–94.

    PubMed  Google Scholar 

  • Suckling GW, Brown RH, Herbison GP. The prevalence of developmental defects of enamel in 696 nine-year-old New Zealand children participating in a health and development study. Community Dent Health 1985;2:303–13.

    PubMed  Google Scholar 

  • Suckling GW, Pearce EI. Developmental defects of enamel in a group of New Zealand children: their prevalence and some associated etiological factors. Community Dent Oral Epidemiol 1984;12:177–84.

    Article  PubMed  Google Scholar 

  • Suga S. Enamel hypomineralisation viewed from the pattern of progressive mineralisation of human and monkey developing enamel. Adv Dent Res 1989;3: 188–198.

    PubMed  Google Scholar 

  • Ubelaker DH. Human skeletal remains. 2nd edn. Washington: Taraxacum Press., 1989.

    Google Scholar 

  • van Amerongen WE, Kreulen CM. Cheese molars: a pilot study of the etiology of hypocalcifications in first permanent molars. ASDC J Dent Child 1995;62:266–9.

    PubMed  Google Scholar 

  • Weerheijm KL. Molar-incisor-hypomineralisation (MIH). Eur J Paediatr Dent 2003;4:114–20.

    PubMed  Google Scholar 

  • Weerheijm KL, Duggal M, Mejare I, et al. Judgement criteria for molar-incisor-hypomineralisation MIH in epidemiologic studies: a summary of the European meeting on MIH held in Athens, 2003. Eur J Paediatr Dent 2003;4:110–3.

    PubMed  Google Scholar 

  • Welch TR, Bergstrom WH, Tsang RC. Vitamin D-deficient rickets: the re-emergence of a once conquered-disease. J Paediatr 2000;137:143–5.

    Article  Google Scholar 

  • Wharton B, Bishop N. Rickets. Lancet 2003;362,1389–1400.

    Article  PubMed  Google Scholar 

  • White WJ. The human skeletal remains from the Broadgate site LSS85. Museum of London Archaeological Service MOLAS unpublished report. 1987. HUM/REP/87/01

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Ogden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogden, A.R., Pinhasi, R. & White, W.J. Nothing new under the heavens: MIH in the past?. Eur Arch Paediatr Dent 9, 166–171 (2008). https://doi.org/10.1007/BF03262632

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03262632

Key words

Navigation