Skip to main content
Log in

Relapsed or Refractory Pediatric Acute Lymphoblastic Leukemia

Current and Emerging Treatments

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Relapsed acute lymphoblastic leukemia (ALL) represents a major cause of morbidity and mortality in pediatrics. With contemporary chemotherapy, >85% of patients with newly diagnosed ALL survive. Unfortunately, 20% of these patients will relapse and for these children, outcomes remain poor despite our best known chemotherapy protocols. Most of these children will achieve a second complete remission, but maintaining this remission remains difficult. Because relapsed ALL is such a significant cause of morbidity and mortality, it is the focus of much research interest. Efforts have been made and continue to focus on understanding the underlying biology that drives relapse. The role of hematopoietic stem cell transplantation in relapsed ALL remains unclear, but many clinicians still favor this for high-risk patients given the poor prognosis with current chemotherapy alone.

It is important to use new drugs with little cross-resistance in the treatment of relapsed ALL. New classes of agents are currently being studied. We also discuss prognostic factors and the biology of relapsed ALL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II

Similar content being viewed by others

References

  1. Ries LAG, Smith MA, Gurney JG. Cancer incidence and survival among children and adolescents: United States SEER Program 1975–1995. NIH publication no. 99–4649. Bethesda (MD): National Cancer Institute, SEER Program, 1999

    Google Scholar 

  2. Smith MA, Seibel NL, Altekruse SF, et al. Outcomes for children and adolescents with cancer: challenges for the twenty-first century. J Clin Oncol 2010; 28 (15): 2625–34

    Article  PubMed  Google Scholar 

  3. Borowitz MJ, Devidas M, Hunger SP, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a Children’s Oncology Group study. Blood 2008; 111 (12): 5477–85

    Article  PubMed  CAS  Google Scholar 

  4. Tallen G, Ratei R, Mann G, et al. Long-term outcome in children with relapsed acute lymphoblastic leukemia after time-point and site-of-relapse stratification and intensified short-course multidrug chemotherapy: results of trial ALL-REZ BFM 90. J Clin Oncol 2010; 28 (14): 2339–47

    Article  PubMed  CAS  Google Scholar 

  5. Schrappe M, Hunger SP, Pui CH, et al. Outcomes after induction failure in childhood acute lymphoblastic leukemia. N Engl J Med 2012 Apr 12; 366 (15): 1371–81

    Article  PubMed  CAS  Google Scholar 

  6. Gaynon PS, Qu RP, Chappell RJ, et al. Survival after relapse in childhood acute lymphoblastic leukemia: impact of site and time to first relapse: the Children’s Cancer Group experience. Cancer 1998; 82: 1387–95

    Article  PubMed  CAS  Google Scholar 

  7. Henze G, Fengler R, Hartmann R, et al. Six-year experience with a comprehensive approach to the treatment of recurrent childhood acute lymphoblastic leukemia (ALL-REZ BFM 85): a relapse study of the BFM group. Blood 1991; 78 (5): 1166–72

    PubMed  CAS  Google Scholar 

  8. Raetz EA, Borowitz MJ, Devidas M, et al. Reinduction platform for children with first marrow relapse of acute lymphoblastic Leukemia: a Children’s Oncology Group Study [corrected]. J Clin Oncol 2008; 26 (24): 3971–8

    Article  PubMed  CAS  Google Scholar 

  9. Szezepanski T, van der Velden VHJ, Van Vlierberghe PV, et al. Late relapses of childhood T-ALL are frequently second T-ALL. Blood 2007; 110 (11): 430a

    Google Scholar 

  10. Klumper E, Pieters R, Veerman AJ, et al. In vitro cellular drug resistance in children with relapsed/refractory acute lymphoblastic leukemia. Blood 1995; 86 (10): 3861–8

    PubMed  CAS  Google Scholar 

  11. Holleman A, Cheok MH, den Boer ML, et al. Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment. N Engl J Med 2004; 351 (6): 533–42

    Article  PubMed  CAS  Google Scholar 

  12. Bhojwani D, Kang H, Moskowitz NP, et al. Biologic pathways associated with relapse in childhood acute lymphoblastic leukemia: a Children’s Oncology Group study. Blood 2006; 108 (2): 711–7

    Article  PubMed  CAS  Google Scholar 

  13. Eckert C, Biondi A, Seeger K, et al. Prognostic value of minimal residual disease in relapsed childhood acute lymphoblastic leukaemia. Lancet 2001; 358 (9289): 1239–41

    Article  PubMed  CAS  Google Scholar 

  14. Ayala F, Dewar R, Kieran M, et al. Contribution of bone microenvironment to leukemogenesis and leukemia progression. Leukemia 2009; 23 (12): 2233–41

    Article  PubMed  CAS  Google Scholar 

  15. Seif AE, Barrett DM, Milone M, et al. Long-term protection from syngeneic acute lymphoblastic leukemia by CpG ODN-mediated stimulation of innate and adaptive immune responses. Blood 2009; 114 (12): 2459–66

    Article  PubMed  CAS  Google Scholar 

  16. Hijiya N, Gajjar A, Zhang Z, et al. Low-dose oral etoposide-based induction regimen for children with acute lymphoblastic leukemia in first bone marrow relapse. Leukemia 2004; 18 (10): 1581–6

    Article  PubMed  CAS  Google Scholar 

  17. Parker C, Waters R, Leighton C, et al. Effect of mitoxantrone on outcome of children with first relapse of acute lymphoblastic leukaemia (ALL R3): an open-label randomised trial. Lancet 2010; 376 (9757): 2009–17

    Article  PubMed  CAS  Google Scholar 

  18. Hijiya N, Stewart CF, Zhou Y, et al. Phase II study of topotecan in combination with dexamethasone, asparaginase, and vincristine in pediatric patients with acute lymphoblastic leukemia in first relapse. Cancer 2008; 112 (9): 1983–91

    Article  PubMed  CAS  Google Scholar 

  19. Hijiya N, Ness KK, Ribeiro RC, et al. Acute leukemia as a secondary malignancy in children and adolescents: current findings and issues. Cancer 2009; 115 (1): 23–35

    Article  PubMed  CAS  Google Scholar 

  20. Hijiya N, Hudson MM, Lensing S, et al. Cumulative incidence of secondary neoplasms as a first event after childhood acute lymphoblastic leukemia. JAMA 2007; 297 (11): 1207–15

    Article  PubMed  CAS  Google Scholar 

  21. Rivera GK, Raimondi SC, Hancock ML, et al. Improved outcome in childhood acute lymphoblastic leukaemia with reinforced early treatment and rotational combination chemotherapy. Lancet 1991; 337 (8733): 61–6

    Article  PubMed  CAS  Google Scholar 

  22. Bader P, Kreyenberg H, Henze GH, et al. Prognostic value of minimal residual disease quantification before allogeneic stem-cell transplantation in relapsed childhood acute lymphoblastic leukemia: the ALL-REZ BFM Study Group. J Clin Oncol 2009; 27 (3): 377–84

    Article  PubMed  Google Scholar 

  23. Borgmann A, Von Stackelberg A, Hartmann R, et al. Unrelated donor stem cell transplantation compared with chemotherapy for children with acute lymphoblastic leukemia in a second remission: a matched-pair analysis. Blood 2003; 101 (10): 3835–9

    Article  PubMed  CAS  Google Scholar 

  24. Uderzo C, Valsecchi MG, Bacigalupo A, et al. Treatment of childhood acute lymphoblastic leukemia in second remission with allogeneic bone marrow transplantation and chemotherapy: ten-year experience of the Italian Bone Marrow Transplantation Group and the Italian Pediatric Hematology Oncology Association. J Clin Oncol 1995; 13 (2): 352–8

    PubMed  CAS  Google Scholar 

  25. Dopfer R, Henze G, Bender-Gotze C, et al. Allogeneic bone marrow transplantation for childhood acute lymphoblastic leukemia in second remission after intensive primary and relapse therapy according to the BFM- and CoALL-protocols: results of the German Cooperative Study. Blood 1991; 78 (10): 2780–4

    PubMed  CAS  Google Scholar 

  26. Eapen M, Raetz E, Zhang MJ, et al. Outcomes after HLA-matched sibling transplantation or chemotherapy in children with B-precursor acute lymphoblastic leukemia in a second remission: a collaborative study of the Children’s Oncology Group and the Center for International Blood and Marrow Transplant Research. Blood 2006 Jun 15; 107 (12): 4961–7

    Article  PubMed  CAS  Google Scholar 

  27. Gaynon PS, Harris RE, Altman AJ, et al. Bone marrow transplantation versus prolonged intensive chemotherapy for children with acute lymphoblastic leukemia and an initial bone marrow relapse within 12 months of the completion of primary therapy: Children’s Oncology Group study CCG-1941. J Clin Oncol 2006; 24 (19): 3150–6

    Article  PubMed  Google Scholar 

  28. Malempati S, Gaynon PS, Sather H, et al. Outcome after relapse among children with standard-risk acute lymphoblastic leukemia: Children’s Oncology Group study CCG-1952. J Clin Oncol 2007; 25: 5800–7

    Article  PubMed  Google Scholar 

  29. Gooley TA, Chien JW, Pergam SA, et al. Reduced mortality after allogeneic hematopoietic-cell transplantation. N Engl J Med 2010; 363 (22): 2091–101

    Article  PubMed  CAS  Google Scholar 

  30. American Society of Hematology. 50 years in hematology: research that revolutionized patient care. Washington, DC: American Society of Hematology, 2008

    Google Scholar 

  31. Nachman JB, Sather HN, Sensel MG, et al. Augmented post-induction therapy for children with high-risk acute lymphoblastic leukemia and a slow response to initial therapy. N Engl J Med 1998 Jun 4; 338 (23): 1663–71

    Article  PubMed  CAS  Google Scholar 

  32. Carol H, Boehm I, Reynolds CP, et al. Efficacy and pharmacokinetic/pharmacodynamic evaluation of the Aurora kinase A inhibitor MLN8237 against preclinical models of pediatric cancer. Cancer Chemother Pharmacol 2011; 68 (5): 1291–304

    Article  PubMed  CAS  Google Scholar 

  33. Bonapace L, Bornhauser BC, Schmitz M, et al. Induction of autophagy-dependent necroptosis is required for childhood acute lymphoblastic leukemia cells to overcome glucocorticoid resistance. J Clin Invest 2010; 120 (4): 1310–23

    Article  PubMed  CAS  Google Scholar 

  34. Yanez L, Bermudez A, Richard C, et al. Successful induction therapy with decitabine in refractory childhood acute lymphoblastic leukemia. Leukemia 2009; 23 (7): 1342–3

    Article  PubMed  CAS  Google Scholar 

  35. Scuto A, Kirschbaum M, Kowolik C, et al. The novel histone deacetylase inhibitor, LBH589, induces expression of DNA damage response genes and apoptosis in Ph- acute lymphoblastic leukemia cells. Blood 2008; 111 (10): 5093–100

    Article  PubMed  CAS  Google Scholar 

  36. Brown P, Levis M, Shurtleff S, etal. FLT3 inhibition selectively kills childhood acute lymphoblastic leukemia cells with high levels of FLT3 expression. Blood 2005; 105 (2): 812–20

    Article  PubMed  CAS  Google Scholar 

  37. Topp MS, Kufer P, Gokbuget N, et al. Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol 2011 Jun 20; 29 (18): 2493–8

    Article  PubMed  CAS  Google Scholar 

  38. Raetz EA, Cairo MS, Borowitz MJ, et al. Chemoimmunotherapy reinduction with epratuzumab in children with acute lymphoblastic leukemia in marrow relapse: a Children’s Oncology Group Pilot Study. J Clin Oncol 2008; 26 (22): 3756–62

    Article  PubMed  CAS  Google Scholar 

  39. Crazzolara R, Cisterne A, Thien M, et al. Potentiating effects of RAD001 (Everolimus) on vincristine therapy in childhood acute lymphoblastic leukemia. Blood 2009; 113 (14): 3297–306

    Article  PubMed  CAS  Google Scholar 

  40. Teachey DT, Obzut DA, Cooperman J, et al. The mTOR inhibitor CCI-779 induces apoptosis and inhibits growth in preclinical models of primary adult human ALL. Blood 2006; 107 (3): 1149–55

    Article  PubMed  CAS  Google Scholar 

  41. Jeha S, Gandhi V, Chan KW, et al. Clofarabine, a novel nucleoside analog, is active in pediatric patients with advanced leukemia. Blood 2004; 103 (3): 784–9

    Article  PubMed  CAS  Google Scholar 

  42. Jeha S, Gaynon PS, Razzouk BI, etal. PhaseII studyof clofarabine in pediatric patients with refractory or relapsed acute lymphoblastic leukemia. J Clin Oncol 2006; 24 (12): 1917–23

    Article  PubMed  CAS  Google Scholar 

  43. Hijiya N, Gaynon P, Barry E, et al. A multi-center phase I study of clofarabine, etoposide and cyclophosphamide in combination in pediatric patients with refractory or relapsed acute leukemia. Leukemia 2009; 23 (12): 2259–64

    Article  PubMed  CAS  Google Scholar 

  44. Hijiya N, Thomson B, Isakoff MS, et al. Phase 2 trial of clofarabine in combination with etoposide and cyclophosphamide in pediatric patients with refractory or relapsed acute lymphoblastic leukemia. Blood 2011 Dec 1; 118 (23): 6043–9

    Article  PubMed  CAS  Google Scholar 

  45. Berg SL, Blaney SM, Devidas M, et al. Phase II study of nelarabine (compound 506U78) in children and young adults with refractory T-cell malignancies: a report from the Children’s Oncology Group. J Clin Oncol 2005; 23 (15): 3376–82

    Article  PubMed  CAS  Google Scholar 

  46. Messinger Y, Gaynon P, Raetz E, et al. Phase I study of bortezomib combined with chemotherapy in children with relapsed childhood acute lymphoblastic leukemia (ALL): a report from the therapeutic advances in childhood leukemia (TACL) consortium. Pediatr Blood Cancer 2010; 55 (2): 254–9

    Article  PubMed  Google Scholar 

  47. Krieg AM. Toll-like receptor 9 (TLR9) agonists in the treatment of cancer. Oncogene 2008; 27 (2): 161–7

    Article  PubMed  CAS  Google Scholar 

  48. Brody JD, Ai WZ, Czerwinski DK, et al. In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a phase I/II study. J Clin Oncol 2010; 28 (28): 4324–32

    Article  PubMed  Google Scholar 

  49. Aplenc R, Blaney SM, Strauss LC, et al. Pediatric phase I trial and pharmacokinetic study of dasatinib: a report from the children’s oncology group phase I consortium. J Clin Oncol 2011 Mar 1; 29 (7): 839–44

    Article  PubMed  CAS  Google Scholar 

  50. Lee HJ, Thompson JE, Wang ES, et al. Philadelphia chromosome-positive acute lymphoblastic leukemia: current treatment and future perspectives. Cancer 2011; 117 (8): 1583–94

    Article  PubMed  Google Scholar 

  51. Ghanem H, Jabbour E, Faderl S, et al. Clofarabine in leukemia: expert review of hematology. Expert Rev Hematol 2010; 3 (1): 15–22

    Article  PubMed  CAS  Google Scholar 

  52. Yamauchi T, Nowak BJ, Keating MJ, et al. DNA repair initiated in chronic lymphocytic leukemia lymphocytes by 4-hydroperoxycyclophosphamide is inhibited by fludarabine and clofarabine. Clin Cancer Res 2001; 7 (11): 3580–9

    PubMed  CAS  Google Scholar 

  53. Commander LA, Seif AE, Insogna IG, et al. Salvage therapy with nelarabine, etoposide, and cyclophosphamide in relapsed/refractory paediatric T-cell lymphoblastic leukaemia and lymphoma. Br J Haematol 2010; 150 (3): 345–51

    Article  PubMed  CAS  Google Scholar 

  54. Schultz KR, Bowman WP, Aledo A, et al. Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a children’s oncology group study. J Clin Oncol 2009; 27 (31): 5175–81

    Article  PubMed  CAS  Google Scholar 

  55. Kantarjian HM, Baccarani M, Jabbour E, et al. Second-generation tyrosine kinase inhibitors: the future of frontline CML therapy. Clin Cancer Res 2011 Apr 1; 17 (7): 1674–83

    Article  PubMed  CAS  Google Scholar 

  56. Horton TM, Gannavarapu A, Blaney SM, et al. Bortezomib interactions with chemotherapy agents in acute leukemia in vitro. Cancer Chemother Pharmacol 2006; 58 (1): 13–23

    Article  PubMed  CAS  Google Scholar 

  57. Mitsiades N, Mitsiades CS, Richardson PG, et al. The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications. Blood 2003; 101 (6): 2377–80

    Article  PubMed  CAS  Google Scholar 

  58. Messinger YH, Gaynon PS, Sposto R, et al. Bortezomib with chemotherapy is highly active in advanced B-precursor acute lymphoblastic leukemia: Therapeutic Advances in Childhood Leukemia Lymphoma (TACL) Study. Blood 2012 Jul 12; 120 (2): 285–90

    Article  PubMed  CAS  Google Scholar 

  59. Chapuis N, Tamburini J, Green AS, etal. Perspectives on inhibiting mTOR as a future treatment strategy for hematological malignancies. Leukemia 24 (10): 1686–99

  60. Plimack ER, Kantarjian HM, Issa JP. Decitabine and its role in the treatment of hematopoietic malignancies. Leuk Lymphoma 2007; 48 (8): 1472–81

    Article  PubMed  CAS  Google Scholar 

  61. Masetti R, Serravalle S, Biagi C, et al. The role of HDACs inhibitors in childhood and adolescence acute leukemias. J Biomed Biotechnol. Epub 2011 Jan 13

  62. Tan J, Cang S, Ma Y, et al. Novel histone deacetylase inhibitors in clinical trials as anti-cancer agents. J Hematol Oncol 2010; 3: 5

    Article  PubMed  Google Scholar 

  63. Nagorsen D, Baeuerle PA. Immunomodulatory therapy of cancer with T cell-engaging BiTE antibody blinatumomab. Exp Cell Res 317 (9): 1255–60

  64. Topp MS, Goekbuget N, Zugmaier G, et al. Clinical activity of the anti-CD19 BiTE® blinatumomab in patients with relapsed/refractory B-precursor acute lymphoblastic leukemia: interim results of a phase 2 study. The 16th Congress of European Hematology Association; 2011 Jun 9–12; London

  65. Tratkiewicz JA, Szer J. Loss of natural killer activity as an indicator of relapse in acute leukaemia. Clin Exp Immunol 1990; 80 (2): 241–6

    Article  PubMed  CAS  Google Scholar 

  66. Lowdell MW, Craston R, Samuel D, et al. Evidence that continued remission in patients treated for acute leukaemia is dependent upon autologous natural killer cells. Br J Haematol 2002; 117 (4): 821–7

    Article  PubMed  CAS  Google Scholar 

  67. Fujii H, Trudeau JD, Teachey DT, et al. In vivo control of acute lymphoblastic leukemia by immunostimulatory CpG oligonucleotides. Blood 2007; 109 (5): 2008–13

    Article  PubMed  CAS  Google Scholar 

  68. SBI Biotech Co., Ltd. A phase I study of GNKG186 in patients with relapsed or refractory B-cell chronic lymphocytic leukemia (B-CLL) [ClinicalTrials.govidentifier NCT01035216]. US National Institutes of Health, Clinical-Trials.gov [online]. Available from URL: http://www.clinicaltrials.gov [Accessed 2012 Jun 15]

  69. TACL: Therapeutic Advances in Childhood Leukemia & Lymphoma [online]. Available from URL: www.tacl.us [Accessed 2012 Jun 15]

  70. Bedikian AY, Silverman JA, Papadopoulos NE, et al. Pharmacokinetics and safety of marqibo (vincristine sulfate liposomes injection) in cancer patients with impaired liver function. J Clin Pharmacol 2011 Aug; 51 (8): 1205–12

    Article  PubMed  CAS  Google Scholar 

  71. Thomas DA, Sarris AH, Cortes J, et al. Phase II study of sphingosomal vin-cristine in patients with recurrent or refractory adult acute lymphocytic leukemia. Cancer 2006 Jan 1; 106 (1): 120–7

    Article  PubMed  CAS  Google Scholar 

  72. Bellott R, Auvrignon A, Leblanc T, et al. Pharmacokinetics of liposomal daunor-ubicin (DaunoXome) during a phase I–II study in children with relapsed acute lymphoblastic leukaemia. Cancer Chemother Pharmacol 2001; 47 (1): 15–21

    Article  PubMed  CAS  Google Scholar 

  73. Fox E, Maris JM, Cohn SL, et al. Pharmacokinetics of orally administered ABT-751 in children with neuroblastoma and other solid tumors. Cancer Chemother Pharmacol 2010 Sep; 66 (4): 737–43

    Article  PubMed  CAS  Google Scholar 

  74. Yee KW, Hagey A, Verstovsek S, et al. Phase 1 study of ABT-751, a novel microtubule inhibitor, in patients with refractory hematologic malignancies. Clin Cancer Res 2005 Sep 15; 11 (18): 6615–24

    Article  PubMed  CAS  Google Scholar 

  75. Abdel-Karim I, Plunkett Jr WK, O’Brien S, et al. A phase I study of pemetrexed in patients with relapsed or refractory acute leukemia. Invest New Drugs 2011 Apr; 29 (2): 323–31

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs Ken-ichi Arai and Kirk Schultz for their valuable comments on the TLR9 agonist. No sources of funding were used to assist in the preparation of this review. Dr Hijiya has received research funds from, and serves as a consultant to, Sanofi-Aventis. All other authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuko Hijiya MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, A., Morgan, E. & Hijiya, N. Relapsed or Refractory Pediatric Acute Lymphoblastic Leukemia. Pediatr Drugs 14, 377–387 (2012). https://doi.org/10.1007/BF03262418

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03262418

Keywords

Navigation