Skip to main content
Log in

The Clinico-Pathologic Role of MicroRNAs miR-9 and miR-151-5p in Breast Cancer Metastasis

  • Short Communication
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Background

MicroRNAs (miRNAs) may function as suppressors or promoters of tumor metastasis according to their messenger RNA targets. Previous studies have suggested that miR-9 and miR-151-5p are associated with metastasis in breast cancer and hepatocellular carcinoma, respectively. We aimed to further establish the potential roles of miR-9 and miR-151–5p in tumor invasion and metastasis and investigate their use as biomarkers.

Methods

We used quantitative real-time PCR (qRT-PCR) to measure differences in miR-9 and miR-151–5p expression between primary breast tumors and their lymph-node metastases in 194 paired tumor samples from 97 patients. We also correlated expression levels with histologic data to investigate their utility as biomarkers.

Results

There were no significant differences in miR-9 expression between the primary tumors and lymph nodes; however, miR-151-5p expression was significantly lower in the lymph-node metastases than in their corresponding tumors (p<0.05). miR-9 levels were elevated in primary breast tumors from patients diagnosed with higher-grade tumors (p<0.05); however, no differences were observed in miR-151–5p levels between different grades of tumor. Interestingly, miR-9 levels were elevated in invasive lobular carcinomas (ILC) compared with invasive ductal carcinomas (IDC; p<0.01).

Conclusions

In aggregate, these data suggest that miR-151–5p upregulation may suppress metastasis in primary breast tumors. Both miRNAs may serve as useful biomarkers in future clinical trials in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Fig. 2
Fig. 3

References

  1. Gupta GP, Massague J. Cancer metastasis: building a framework. Cell 2006 Nov 17; 127 (4): 679–95.

    Article  PubMed  CAS  Google Scholar 

  2. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2002 Jun; 2 (6): 442–54.

    Article  PubMed  CAS  Google Scholar 

  3. Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 2003 Jun; 3 (6): 453–8.

    Article  PubMed  CAS  Google Scholar 

  4. Ma L, Weinberg RA. Micromanagers of malignancy: role of microRNAs in regulating metastasis. Trends Genet 2008 Sep; 24 (9): 448–56.

    Article  PubMed  CAS  Google Scholar 

  5. Nicoloso MS, Spizzo R, Shimizu M, et al. MicroRNAs: the micro steering wheel of tumour metastases. Nat Rev Cancer 2009 Apr; 9 (4): 293–302.

    Article  PubMed  CAS  Google Scholar 

  6. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004 Jan 23; 116 (2): 281–97.

    Article  PubMed  CAS  Google Scholar 

  7. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009 Jan 23; 136 (2): 215–33.

    Article  PubMed  CAS  Google Scholar 

  8. Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 2004 Mar 2; 101 (9): 2999–3004.

    Article  PubMed  CAS  Google Scholar 

  9. Ventura A, Jacks T. MicroRNAs and cancer: short RNAs go a long way. Cell 2009 Feb 20; 136 (4): 586–91.

    Article  PubMed  CAS  Google Scholar 

  10. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer 2006 Nov; 6 (11): 857–66.

    Article  PubMed  CAS  Google Scholar 

  11. Castellano L, Giamas G, Jacob J, et al. The estrogen receptor-alpha-induced microRNA signature regulates itself and its transcriptional response. Proc Natl Acad Sci U S A 2009 Sep 15; 106 (37): 15732–7.

    Article  PubMed  CAS  Google Scholar 

  12. Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 2007 Oct 11; 449 (7163): 682–8.

    Article  PubMed  CAS  Google Scholar 

  13. Iorio MV, Ferracin M, Liu CG, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res 2005 Aug 15; 65 (16): 7065–70.

    Article  PubMed  CAS  Google Scholar 

  14. Ma L, Young J, Prabhala H, et al. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 2010 Mar; 12 (3): 247–56.

    PubMed  CAS  Google Scholar 

  15. Tavazoie SF, Alarcon C, Oskarsson T, et al. Endogenous human micro RNAs that suppress breast cancer metastasis. Nature 2008 Jan 10; 451 (7175): 147–52.

    Article  PubMed  CAS  Google Scholar 

  16. Valastyan S, Reinhardt F, Benaich N, et al. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 2009 Jun 12; 137 (6): 1032–46.

    Article  PubMed  CAS  Google Scholar 

  17. Lujambio A, Calin GA, Villanueva A, et al. A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci U S A 2008 Sep 9; 105 (36): 13556–61.

    Article  PubMed  CAS  Google Scholar 

  18. Luedde T. MicroRNA-151 and its hosting gene FAK (focal adhesion kinase) regulate tumor cell migration and spreading of hepatocellular carcinoma. Hepatology 2010 Sep; 52 (3): 1164–6.

    Article  PubMed  Google Scholar 

  19. Loudig O, Milova E, Brandwein-Gensler M, et al. Molecular restoration of archived transcriptional profiles by complementary-template reverse-transcription (CT-RT). Nucleic Acids Res 2007; 35 (15): e94.

    Article  PubMed  Google Scholar 

  20. Enerly E, Steinfeld I, Kleivi K, et al. miRNA-mRNA integrated analysis reveals roles for miRNAs in primary breast tumors. PLoS One 2011; 6 (2): e16915.

    Article  PubMed  CAS  Google Scholar 

  21. Buffa FM, Camps C, Winchester L, et al. microRNA-associated progression pathways and potential therapeutic targets identified by integrated mRNA and microRNA expression profiling in breast cancer. Cancer Res 2011 Sep 1; 71 (17): 5635–45.

    Article  PubMed  CAS  Google Scholar 

  22. Schultz NA, Werner J, Willenbrock H, et al. MicroRNA expression profiles associated with pancreatic cancer [abstract]. J Clin Oncol 2011 Feb 1; 29 (4 Suppl.): abstract 153.

    Google Scholar 

  23. Finak G, Bertos N, Pepin F, et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 2008; 14 (5): 518–27.

    Article  PubMed  CAS  Google Scholar 

  24. Walker RA, Bartlett JM, Dowsett M, et al. HER2 testing in the UK: further update to recommendations. J Clin Pathol 2008 Jul; 61 (7): 818–24.

    Article  PubMed  CAS  Google Scholar 

  25. Sieuwerts AM, Mostert B, Bolt-de Vries J, et al. mRNA and microRNA expression profiles in circulating tumor cells and primary tumors of metastatic breast cancer patients. Clin Cancer Res 2011 Jun 1; 17 (11): 3600–18.

    Article  PubMed  CAS  Google Scholar 

  26. Shaw JA, Brown J, Coombes RC, et al. Circulating tumor cells and plasma DNA analysis in patients with indeterminate early or metastatic breast cancer. Biomark Med 2011 Feb; 5 (1): 87–91.

    Article  PubMed  CAS  Google Scholar 

  27. Gu Y, Lin S, Li JL, et al. Altered LKB1/CREB-regulated transcription coactivator (CRTC) signaling axis promotes esophageal cancer cell migration and invasion. Oncogene 2012 Jan 26; 31 (4): 469–79.

    Article  PubMed  CAS  Google Scholar 

  28. Tognon CE, Somasiri AM, Evdokimova VE, et al. ETV6-NTRK3-mediated breast epithelial cell transformation is blocked by targeting the IGF1R signaling pathway. Cancer Res 2011 Feb 1; 71 (3): 1060–70.

    Article  PubMed  CAS  Google Scholar 

  29. Wendt MK, Schiemann WP. Therapeutic targeting of the focal adhesion complex prevents oncogenic TGF-beta signaling and metastasis. Breast Cancer Res 2009; 11 (5): R68.

    Article  PubMed  Google Scholar 

  30. Acs G, Lawton TJ, Rebbeck TR, et al. Differential expression of E-cadherin in lobular and ductal neoplasms of the breast and its biologic and diagnostic implications. Am J Clin Pathol 2001 Jan; 115 (1): 85–98.

    Article  PubMed  CAS  Google Scholar 

  31. Gamallo C, Palacios J, Suarez A, et al. Correlation of E-cadherin expression with differentiation grade and histological type in breast carcinoma. Am J Pathol 1993 Apr; 142 (4): 987–93.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

No sources of funding were used to conduct this study or prepare this manuscript. The authors have no conflicts of interest that are directly relevant to the content of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Krell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krell, J., Frampton, A.E., Jacob, J. et al. The Clinico-Pathologic Role of MicroRNAs miR-9 and miR-151-5p in Breast Cancer Metastasis. Mol Diagn Ther 16, 167–172 (2012). https://doi.org/10.1007/BF03262205

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03262205

Keywords

Navigation