Skip to main content
Log in

Detection of Multiple Human Herpes Viruses by DNA Microarray Technology

  • Original Research Article
  • Published:
Molecular Diagnosis Aims and scope Submit manuscript

Abstract

Background: The detailed characterization of virus DNA is a challenge, and the genotyping that has been achieved to date has only been possible because researchers have sent a great deal of time and effort to do so. Instead of the simultaneous detection of hundreds of viruses on a single high-density DNA-chip at very high costs per chip, we present here an alternative approach using a well-designed and tailored microarray which can establish whether or not a handful of viral genes are present in a clinical sample.

Methods: In this study we applied a new concept of microarray-based, optimized and robust biochemistry for molecular diagnostics of the herpesviruses. For comparison, all samples were genotyped using standard procedures.

Results: The biochemical procedure of a knowledge-based, low-density microarray was established based on the molecular diagnostics of human herpes viruses: herpes simplex virus (HSV) HSV-1, HSV-2, varicella zoster virus (VZV), Epstein-Barr virus (EBV), cytomegalovirus (CMV), and HHV-6. The study attempted to optimize parameters of microarray design, surface chemistry, oligonucleotide probe spotting, sample labeling and DNA hybridization to the developed DNA microarray. The results of 12 900 hybridization reactions on about 150 configured herpes virus microarrays showed that the established microarray-based typing procedure was reproducible, virus-specific and sufficiently sensitive with a lower limit of 100 viral copies per mL sample.

Conclusions: The developed method utilizes low-fluorescence background coverslips, epoxy surface chemistry, standardized oligonucleotide probe spotting, PCR-labeling with Cy3 of isolated DNA, array hybridization, and detecting of specific spot fluorescence by an automatic microarray reader. We expect the configured microarray approach to be the method for high-throughput associated studies on human herpes viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang D, Coscoy L, Zylberberg M, et al. Microarray-based detection and genotyping of viral pathogens. Proc Natl Acad Sci U S A 2002; 99: 15687–92

    Article  PubMed  CAS  Google Scholar 

  2. Földes-Papp Z, Angerer B, Ankenbauer W, et al. Modeling the dynamics of nonenzymatic and enzymatic nucleotide processes by fractal dimension. In: Losa GA, Merlini D, Nonnenmacher TF, et al., editors. Fractals in biology and medicine. Vol II. Boston (MA): Birkhauser, 1998: 238–54

    Chapter  Google Scholar 

  3. Karlin S, Mocarski ES, Schachtel GA. Molecular evolution of herpesviruses: genomic and protein sequence comparisons. J Virol 1994; 68: 1886–902

    PubMed  CAS  Google Scholar 

  4. Fields BN, Knipe DM, Howley PM, et al., editors. Fields virology. 3rd ed. Philadelphia (PA): Raven Publishers, 1996

    Google Scholar 

  5. Montgomery RI, Warner MS, Lum BJ, et al. Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell 1996; 87: 427–36

    Article  PubMed  CAS  Google Scholar 

  6. Garner JA. Herpes simplex virion entry into and intracellular transport within mammalian cells. Adv Drug Deliv Rev 2003; 55(11): 1497–513

    Article  PubMed  CAS  Google Scholar 

  7. Carfi A, Willis SH, Whitbeck JC, et al. Herpes simplex virus glycoprotein D bound to the human receptor HveA. Mol Cell 2001; 81: 169–79

    Article  Google Scholar 

  8. Farassati F, Yang AD, Lee PW. Oncogenes in Ras signaling pathway dictate host-cell permissiveness to herpes simplex virus 1. Nat Cell Biol 2001; 3: 745–50

    Article  PubMed  CAS  Google Scholar 

  9. Sauerbrei A, Eichhorn U, Gawellek S, et al. Molecular characterization of varizella-zoster virus strains in Germany and differentiation from Oka vaccine strain. J Med Virol 2003; 71(2): 313–9

    Article  PubMed  CAS  Google Scholar 

  10. Ambinder R. Infection and lymphoma. N Engl J Med. 2003; 349(14): 1309–11

    Article  PubMed  CAS  Google Scholar 

  11. Luppi M, Barozzi P, Schulz TF, et al. Bone marrow failure associated with human herpesvirus 8 infection after transplantation. N Engl J Med 2000; 343(19): 1378–85

    Article  PubMed  CAS  Google Scholar 

  12. Landolfo S, Gariglio M, Gribaudo G, et al. The human cytomegalovirus. Pharmacol Ther 2003; 98(3): 269–97

    Article  PubMed  CAS  Google Scholar 

  13. Sester M, Gartner BC, Sester U, et al. Is the cytomegalovirus serologic status always accurate?: a comparative analysis of humoral and cellular immunity. Transplantation 2003; 76(8): 1229–30

    Article  PubMed  Google Scholar 

  14. Lautenschlager I, Linnavuori K, Hockerstedt K. Human herpesvirus-6 antigenemia after liver transplantation. Transplantation 2000; 69(12): 2561–6

    Article  PubMed  CAS  Google Scholar 

  15. Inoue Y, Yasukawa M, Fujita S. Induction of T-cell apoptosis by human herpesvirus 6. J Virol 1997; 71: 3751–9

    PubMed  CAS  Google Scholar 

  16. Lusso P, De Maria A, Malnati M, et al. Induction of CD4 and susceptibility to HIV-1 infection in human CD8+ T lymphocytes by human herpesvirus 6. Nature 1991; 349: 533–5

    Article  PubMed  CAS  Google Scholar 

  17. Lusso P, Malnati MS, Garzino-Demo A, et al. Infection of natural killer cells by human herpesvirus 6. Nature 1993; 362: 458–62

    Article  PubMed  CAS  Google Scholar 

  18. Pellett PE, Black JB. Human herpesvirus 6. In: Fields BN, Knipe DM, Howie PM, et al., editors. Fields virology. 3rd ed. Philadelphia (PA): Lippincott-Raven, 1996: 2587–608

    Google Scholar 

  19. Kimura H, Shibata M, Kuzushima K, et al. Detection and direct typing of herpes simplex virus by polymerase chain reaction. Med Microbiol Immunol 1990; 179: 177–81

    Article  PubMed  CAS  Google Scholar 

  20. Puchhammer-Stoeckl E, Popow-Kraupp T, Heinz FX, et al. Detection of varicellazoster virus DNA by polymerase chain reaction in the cerebrospinal fluid of patients suffering from neurological complications associated with chicken pox or herpes zoster. J Clin Microbiol 1991; 29: 1513–6

    Google Scholar 

  21. Telenti A, Marshall WF, Smith TF. Detection of Epstein-Barr virus by polymerase chain reaction. J Clin Microbiol 1990; 28: 2187–90

    PubMed  CAS  Google Scholar 

  22. Daiminger A, Schalasta G, Betzl D, et al. Detection of human cytomegalovirus in urine samples by cell culture, early antigen assay and polymerase chain reaction. Infection 1994; 22: 24–8

    Article  PubMed  CAS  Google Scholar 

  23. Jarrett RF, Clark DA, Josephs SF, et al. Detection of human herpesvirus-6 DNA in peripheral blood and saliva. J Med Virol 1990; 32: 73–6

    Article  PubMed  CAS  Google Scholar 

  24. Markoulatos P, Georgopoulou A, Siafakas N, et al. Laboratory diagnosis of common herpesvirus infections of the central nervous system by a multiplex PCR assay. J Clin Microbiol 2001; 39(12): 4426–32

    Article  PubMed  CAS  Google Scholar 

  25. Penchovsky R, Birch-Hirschfeld E, McCaskill J. End-specific covalent photo-dependent immobilisation of synthetic DNA to paramagnetic beads [abstract]. Nucleic Acids Res 2000; 28(22): e98

    Article  PubMed  CAS  Google Scholar 

  26. Pieles U, Englisch U. Psoralen covalently linked to oligonucleotides: synthesis, sequence specific recognition of DNA and photo-cross-linking to pyrimidine residues of DNA. Nucl Acids Res 1989; 17: 285–99

    Article  PubMed  CAS  Google Scholar 

  27. Pieles U, Sproat BS, Neuner P, et al. Preparation of a novel psoralen containing deoxyadenosine building block for the facile solid phase synthesis of psoralen-modified oligonucleotides for a sequence specific crosslink to a given target sequence. Nucleic Acids Res 1989; 17(22): 8967–78

    Article  PubMed  CAS  Google Scholar 

  28. Maskos U, Southern EM. Oligonucleotide hybridizations on glass supports: a novel linker for oligonucleotide synthesis and hybridization properties of oligonucleotides synthesized in situ. Nucleic Acids Res 1992; 20(7): 1679–84

    Article  PubMed  CAS  Google Scholar 

  29. Schmidtke M, Karger A, Meerbach A, et al. Binding of N′,N′-bisheteryl derivate of dispirotripiperazine to heparan sulfate residues on the cell surface specifically prevents infection of viruses from different families. Virology 2003; 311(1): 134–43

    Article  PubMed  CAS  Google Scholar 

  30. Meerbach A, Gruhn B, Egerer R, et al. Semiquantitative PCR analysis of Epstein-Barr Virus DNA in clinical samples of patients with EBV-associated diseases. J Med Virol 2001; 65: 348–57

    Article  PubMed  CAS  Google Scholar 

  31. Striebel H-M, Birch-Hirschfeld E, Egerer R, et al. Virus diagnostics on microarrays. Curr Pharm Biotechnol 2003; 4(6): 401–15

    Article  PubMed  CAS  Google Scholar 

  32. Birch-Hirschfeld E, Egerer R, Striebel H-M, et al. New ways to immobilize oligonucleotides on DNA-chips. Chemistry of Nucleic Acid Components — XIIth Symposium; 2002 Sep 3–8; Czech Republic. Collection Symp Ser 2002; 5: 299–303

    CAS  Google Scholar 

  33. Zeng X. The making of a portrait: bringing it into focus. In: Földes-Papp Z, Enderlein J, Widengren J, Kinjo M, editors. The way down from single genes and proteins to single molecules (four special theme-issues in 2003 and 2004). Curr Pharm Biotechnol 2003; 4(6): 397–9

    CAS  Google Scholar 

  34. Földes-Papp Z, Enderlein J, Widengren J, et al., editors. The way down from single genes and proteins to single molecules. Curr Pharm Biotechnol 2003; 4(6): 351–484

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to two Jena-based companies, Quantifoil Micro Tools GmbH, and Jena Optronik GmbH, for supporting our research with microarray substrates and a microarray reader. Also, we would like to thank Dr Axel Stelzner for helpful discussions, Monique Rüttger and Martina Müller for their technical assistance. The authors have no conflict of interest relevant to the content of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeno Földes-Papp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Földes-Papp, Z., Egerer, R., Birch-Hirschfeld, E. et al. Detection of Multiple Human Herpes Viruses by DNA Microarray Technology. CNS Drugs 8, 1–9 (2004). https://doi.org/10.1007/BF03260041

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03260041

Keywords

Navigation