Skip to main content
Log in

Allergy Vaccines

A Review of Developments

  • Review Article
  • Research Perspective
  • Published:
Clinical Immunotherapeutics Aims and scope Submit manuscript

Summary

Immunotherapy by vaccination (hyposensitisation) has been used since the beginning of this century for the treatment of atopic diseases. Immunotherapy is still widely used and in the hands of specialists is quite safe. However, the use of crude allergen extracts, doubts about its efficacy for many allergens and the risk of severe adverse effects when not properly administered have raised questions about the place of hyposensitisation as part of modern immunotherapy. The relatively efficient pharmacotherapy of allergic diseases has also reduced the need for traditional high dose immunotherapy. However, progress in the understanding of the basic immune mechanisms of allergy and in the characterisation of dominant allergens has stimulated the development of several novel strategies for immunotherapy. A few of these have the potential of reaching the clinic in the near future. The most promising areas of this rapidly developing field will be covered in this article. The 4 main areas which will be discussed in more detail are: (i) progress in the area of modifications of allergen extracts or purified recombinant allergens by allergen cross-linking, monomethoxy-polyethylene glycol coupling or immune complex formation, with the aim of reducing the allergenicity of the antigen or to tolerise or redirect the immune response to a mainly T helper 1 response; (ii) oral administration of allergens or allergen extracts, possibly by using bacteria as live vaccines; (iii) treatment with immunodominant peptides from major allergens, with the aim of inducing unresponsiveness in allergen-specific T cells; and (iv) immune intervention directly targeting the IgE molecule, to deplete circulating and mast cell bound IgE, by treatment with monoclonal antibodies or by vaccination against IgE using parts of the IgE molecule covalently coupled to a foreign carrier protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Knight SC, Stagg AJ. Antigen-presenting cell types. Curr Opin Immunol 1993; 5: 374–82

    Article  PubMed  CAS  Google Scholar 

  2. Romagniani S. Induction of TH1 and TH2 responses: a key role for the ‘natural’ immune response? Immunol Today 1992; 13: 379–81

    Article  Google Scholar 

  3. Punnonen J, Aversa GG, Cocks BG, et al. Interleukin-13 induces interleukin-4-independent IgG4 and IgE synthesis and CD23 expression by human B cells. Proc Natl Acad Sci USA 1993; 909: 3730–4

    Article  Google Scholar 

  4. Ricci M. IL-4: a key cytokine in atopy. Clin Exp Allergy 1994; 24: 801–12

    Article  PubMed  CAS  Google Scholar 

  5. Kelso A. Th1 and Th2 subsets: paradigms lost? Immunol Today 1995; 16: 374–9

    Article  PubMed  CAS  Google Scholar 

  6. Kay B. T lymphocytes and their products in atopic allergy and asthma. Int Arch Allergy Appl Immunol 1991; 94: 189–93

    Article  PubMed  CAS  Google Scholar 

  7. Corrigan CJ, Kay AB. T cells and eosinophils in the pathogenesis of asthma. Immunol Today 1992; 13: 501–7

    Article  PubMed  CAS  Google Scholar 

  8. Robinson DS, Hamid Q, Ying S, et al. Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N Engl J Med 1992; 326: 298–304

    Article  PubMed  CAS  Google Scholar 

  9. Noon L. Prophylactic inoculation against hay fever. Lancet 1911; II: 1572–3

    Article  Google Scholar 

  10. Freeman J. Further observations on the treatment of hay fever by hypodermic inoculations of pollen vaccine. Lancet 1911; II: 814–7

    Article  Google Scholar 

  11. Nakagawa T, Gershwin ME. Immunotherapy of allergic diseases. Int Arch Allergy Immunol 1993; 102: 117–20

    Article  PubMed  CAS  Google Scholar 

  12. Ohman JL. Allergen immunotherapy. Clin Allergy 1992; 76: 977–91

    Google Scholar 

  13. Food and Drug Administration. FDA notes. November 1988

  14. Golden DBK, Lawrence ID, Hamilton RH, et al. Clinical correlation of the venom-specific IgG antibody level during maintenance venom immunotherapy. J Allergy Clin Immunol 1992; 90: 386–93

    Article  PubMed  CAS  Google Scholar 

  15. Müller U, Morris T, Bischof M, et al. Combined active and passive immunotherapy in honey-bee-sting allergy. J Allergy Clin Immunol 1986; 78: 115–22

    Article  PubMed  Google Scholar 

  16. Sehon AH. Suppression of IgE antibody responses with tolerogenic conjugates of allergens and haptens. Prog Allergy 1982; 32: 161–202

    PubMed  CAS  Google Scholar 

  17. Dreborg S, Åkerblom E. Immunotherapy with monometh-oxypolyethylene glycol modified allergens. CRC Grit Rev Ther Drug Carrier Syst 1990; 6: 315–65

    CAS  Google Scholar 

  18. HayGlass KT, Stefura BP. Anti-interferon γ treatment blocks the ability of glutaraldehyde-polymerized allergens to inhibit specific IgE responses. J Exp Med 1991; 173: 279–85

    Article  PubMed  CAS  Google Scholar 

  19. Gieni RS, Yang X, HayGlass KT. Allergen-specific modulation of cytokine synthesis patterns and IgE responses in vivo with chemically modified allergen. J Immunol 1993; 150: 302–10

    PubMed  CAS  Google Scholar 

  20. Yang X, Gieni RS, Mosmann TR, et al. Chemically modified antigen preferentially elicits induction of Th1-like cytokine synthesis patterns in vivo. J Exp Med 1993; 178: 349–53

    Article  PubMed  CAS  Google Scholar 

  21. HayGlass KT, Stefura BP. Antigen-specific inhibition of ongoing murine IgE responses II. Inhibition of IgE responses induced by treatment with glutaraldehyde-modified allergens is paralleled by reciprocal increases in IgG2a synthesis. J Immunol 1991; 147: 2455–60

    PubMed  CAS  Google Scholar 

  22. Gieni RS, HayGlass KT. Regulation of murine IgE responses: induction of long-lived inhibition of allergen-specific responses is genetically restricted. Cell Immunol 1991; 138: 64–78

    Article  PubMed  CAS  Google Scholar 

  23. Machiels JJ, Somville MA, Lebrun PM, et al. Allergic bronchial asthma due to Dermatophagoides pteronyssinus hypersensitivity can be efficiently treated by inoculation of allergen-antibody complexes, J Clin Invest 1990; 85: 1024–35

    Article  PubMed  CAS  Google Scholar 

  24. Saint-Remy J-MR. Novel approaches in immunotherapy. Clin Rev Allergy 1994; 12: 23–42

    PubMed  CAS  Google Scholar 

  25. Machiels JJ, Lebrun PM, Jacquemin MG, et al. Significant reduction of nonspecific bronchial reactivity in patients with Dermatophagoides pteronyssinus-sensitive allergic asthma under therapy with allergen-antibody complexes. Am Rev Respir Dis 1993; 147: 1407–12

    PubMed  CAS  Google Scholar 

  26. Thepen T, McMenamin C, Oliver J, et al. Regulation of immune response to inhaled antigen by alveolar macrophages: differential effects of in vivo alveolar macrophage elimination on the induction of tolerance vs immunity. Eur J Immunol 1991; 21: 2845–50

    Article  PubMed  CAS  Google Scholar 

  27. Manca F, Fenoglio D, Kunkl A, et al. Differential activation of T cell clones stimulated by macrophages exposed to antigen complexed with monoclonal antibodies. J Immunol 1988; 140: 2893–8

    PubMed  CAS  Google Scholar 

  28. Manca F, Fenoglio D, Li Pira G, et al. Effect of antigen/antibody ratio on macrophage uptake, processing and presentation to T cells of antigen complexed with polyclonal antibodies. J Exp Med 1991; 173: 37–48

    Article  PubMed  CAS  Google Scholar 

  29. Heyman B. The immune complex: possible ways of regulating the antibody response. Immunol Today 1990; 11: 310–3

    Article  PubMed  CAS  Google Scholar 

  30. Hanson DG. Ontogeny of orally induced tolerance to soluble proteins in mice I. Priming and tolerance in newborns. J Immunol 1981; 127: 1518–24

    PubMed  CAS  Google Scholar 

  31. Mowat AM. The regulation of immune responses to dietary protein antigens. Immunol Today 1987; 8: 93–8

    Article  CAS  Google Scholar 

  32. Taudorf E, Laursen LC, Djurup R, et al. Oral administration of grass pollen to hay fever patients. An efficacy study in oral hyposensitization. Allergy 1985; 40: 321–35

    Article  PubMed  CAS  Google Scholar 

  33. Taudorf E, Laursen LC, Lanner Å, et al. Oral immunotherapy in birch pollen hay fever. J Allergy Clin Immunol 1987; 80: 153–61

    Article  PubMed  CAS  Google Scholar 

  34. Taudorf E, Möller C, Russell MW. Secretory IgA response in oral immunotherapy. Investigation in birch pollinosis. Allergy 1994; 49: 760–5

    Article  PubMed  CAS  Google Scholar 

  35. Oppenheimer J, Areson JG, Nelson HS. Safety and efficacy of oral immunotherapy with standardized cat extract. J Allerg Clin Immunol 1994; 93: 61–7

    Article  CAS  Google Scholar 

  36. Holt PG. Immunoprophylaxis of atopy: light at the end of the tunnel? Immunol Today 1994; 15: 484–9

    Article  PubMed  CAS  Google Scholar 

  37. Holt PG. A potential vaccine strategy for asthma and allied atopic diseases during early childhood. Lancet 1994; 344: 456–8

    Article  PubMed  CAS  Google Scholar 

  38. Hoiseth SK, Stoker BAD. Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature 1981; 291: 238

    Article  PubMed  CAS  Google Scholar 

  39. Valenta R, Duchêne M, Vrtala S, et al. Recombinant allergens as candidates for immunotherapy of type I allergic diseases. Vaccines 1993; 93: 37–42

    Google Scholar 

  40. Litwin A, Pesce AJ, Michael JG. Regulation of the immune response to allergens by immunosuppressive allergenic fragments. I. Peptic fragment of honey bee venom phospholipase A2. Int Arch Allergy Appl Immunol 1988; 87: 361–6

    Article  PubMed  CAS  Google Scholar 

  41. O’Hehir RE, Garman RD, Greenstein JL, et al. The specificity and regulation of T-cell responsiveness to allergens. Ann Rev Immunol 1991; 9: 67–95

    Article  Google Scholar 

  42. Schwartz RH. T cell anergy. When cells of the immune system ‘see’ antigens in the absence of the right cosignais, they shut themselves down instead of attacking. Further therapies might capitalize on that reaction. Sci Am 1993 Aug: 48–54

    Google Scholar 

  43. Lanzavecchia A. Identifying strategies for immune intervention. Science 1993; 14: 937–44

    Article  Google Scholar 

  44. Schwartz RH. A cell culture model for T lymphocyte clonal anergy. Science 1990; 248: 1349–56

    Article  PubMed  CAS  Google Scholar 

  45. Lamb JR, Skidmore BJ, Green N, et al. Induction of tolerance in influenza virus-immune T lymphocyte clones with synthetic peptides of influenza hemagglutinin. J Exp Med 1983; 157: 1434–47

    Article  PubMed  CAS  Google Scholar 

  46. Hsieh KH. Altered interleukin 2 (IL-2) production and responsiveness after hyposensitization to house dust. J Allergy Clin Immunol 1985; 76: 188–94

    Article  PubMed  CAS  Google Scholar 

  47. Hsieh KH. Decreased expression of high affinity interleukin 2 receptor after hyposensitization to house dust. Ann Allergy 1987; 59: 57–62

    PubMed  CAS  Google Scholar 

  48. Mohapatra SS. Modulation of allergen-specific antibody responses by T-cell-based peptide vaccine(s). Clin Rev Allergy 1994; 12: 3–22

    PubMed  CAS  Google Scholar 

  49. O’Hehir RE, Hoyne GF, Thomas WR, et al. House dust mite allergy: from T-cell epitopes to immunotherapy. Eur J Clin Invest 1993; 23: 763–72

    Article  PubMed  Google Scholar 

  50. Wallner BP, Gefter ML. Immunotherapy with T-cell-reactive peptides derived from allergens. Allergy 1994; 49: 302–8

    Article  PubMed  CAS  Google Scholar 

  51. Norman PS. Modern concepts of immunotherapy. Curr Opin Immunol 1993; 5: 968–73

    Article  PubMed  CAS  Google Scholar 

  52. Schad VC. T cell tolerance: models for clinical application to allergy and autoimmunity. Mech Immune Regul 1994; 58: 193–205

    Article  CAS  Google Scholar 

  53. O’Hehir RE, Lamb JR. Induction of specific clonal anergy in human T lymphocytes by Staphylococcus aureus enterotoxins. Proc Natl Acad Sci USA 1990; 87: 8884–8

    Article  PubMed  Google Scholar 

  54. O’Hehir RE, Yssel H, Verma S, et al. Clonal analysis of differential lymphokine production in peptide and superantigen induced T cell anergy. Int Immunol 1991; 3: 819–26

    Article  PubMed  Google Scholar 

  55. Lake RA, O’Hehir RE, Verhoef A, et al. CD28 messenger RNA rapidly decays when activated T-cells are functionally anergized with specific peptide. Int Immunol 1993; 5: 461–6

    Article  PubMed  CAS  Google Scholar 

  56. Lombardi G, Sidhu S, Batchelor R, et al. Anergic T cells as suppressor cells in vitro. Science 1994; 264: 1587–9

    Article  PubMed  CAS  Google Scholar 

  57. Hoyne GF, O’Hehir RE, Wraith DC, et al. Inhibition of T cell and antibody responses to house dust mite allergen by inhalation of the dominant T cell epitope in naive and sensitized mice. J Exp Med 1993; 178: 1783–8

    Article  PubMed  CAS  Google Scholar 

  58. Holt PG, McMenamin C. Defence against allergic sensitization in the healthy lung: the role of inhalation tolerance. Clin Exp Allergy 1989; 19: 255–62

    Article  PubMed  CAS  Google Scholar 

  59. McMenamin C, Schon Hegrad M, Oliver J, et al. Regulation of IgE responses to inhaled antigens: cellular mechanisms underlying allergic sensitization versus tolerance induction. Int Arch Allergy Appl Immunol 1991; 94: 78–82

    Article  PubMed  CAS  Google Scholar 

  60. Morgenstern JP, Griffith IJ, Brauer AW, et al. Amino acid sequence of Fel dI, the major allergen of the domestic cat: protein sequence and cDNA cloning. Proc Natl Acad Sci USA 1991; 88: 9690–4

    Article  PubMed  CAS  Google Scholar 

  61. Rogers BL, Morgenstern JP, Garman RD, et al. Recombinant Fel dI: expression, purification, IgE binding and reaction with cat-allergic human T cells. Mol Immunol 1993; 30: 559–68

    Article  PubMed  CAS  Google Scholar 

  62. Briner TJ, Kuo MC, Keating KM, et al. Peripheral T-cell tolerance induced in naive and primed mice by subcutaneous injection of peptides from the major cat allergen Fel dI. Proc Natl Acad Sci USA 1993; 90: 7608–12

    Article  PubMed  CAS  Google Scholar 

  63. Norman PS, Ohman JL, Long AA, et al. Early clinical experience with T cell reactive peptides from cat allergen Fel dI [abstract]. J Allergy Clin Immunol 1994; 93: 231

    Google Scholar 

  64. Norman PS, Ohman JL, Long AA, et al. Follow on study of the first clinical trial with T cell defined peptides from cat allergen Fel dI [abstract]. J Allergy Clin Immunol 1995; 95: 259

    Article  Google Scholar 

  65. Vercelli D, Geha RS. Regulation of IgE synthesis in humans: a tale of two signals. J Allergy Clin Immunol 1991; 88: 285–97

    Article  PubMed  CAS  Google Scholar 

  66. Jabara HH, Fu SM, Geha RS, et al. CD40 and IgE: synergism between anti-CD40 and IgE: synergism between anti-CD40 monoclonal antibody and interleukin 4 in the induction of IgE synthesis by highly purified human B cells. J Exp Med 1990; 172: 1861–4

    Article  PubMed  CAS  Google Scholar 

  67. Spriggs MK, Armitage RJ, Strockbine L, et al. Recombinant human CD40 ligand stimulates B cell proliferation and immunoglobulin E secretion. J Exp Med 1992; 176: 1543–50

    Article  PubMed  CAS  Google Scholar 

  68. Fuleihan R, Ramesh N, Geha RS. Role of CD40-CD40-ligand interaction in Ig-isotype switching. Curr Opin Immunol 1993; 5: 963–7

    Article  PubMed  CAS  Google Scholar 

  69. Bradding P, Feather IH, Howarth PH, et al. Interleukin 4 is localized to and released by human mast cells. J Exp Med 1992; 176: 1381–6

    Article  PubMed  CAS  Google Scholar 

  70. Brunner T, Heusser CH, Dahinden CA. Human peripheral blood basophils primed by interleukin 3 (IL-3) produce IL-4 in response to immunoglobulin E receptor stimulation. J Exp Med 1993; 177: 605–11

    Article  PubMed  CAS  Google Scholar 

  71. Arock M, Merle-Beral H, Dugas B, et al. IL-4 release by human leukemic and activated normal basophils. J Immunol 1993; 151: 1441–7

    PubMed  CAS  Google Scholar 

  72. Gauchat JF, Henchoz S, Mazzei G, et al. Induction of human IgE synthesis in B-cells by mast cells and basophils. Nature 1993; 365: 340–3

    Article  PubMed  CAS  Google Scholar 

  73. Kruse N, Tony HP, Sebald W. Conversion of human interleukin-4 into high affinity antagonist by a single amino acid replacement. EMBO J 1993; 11: 3237–44

    Google Scholar 

  74. Aversa G, Punnonen J, Cocks BG, et al. An interleukin 4 (IL-4) mutant protein inhibits both IL-4 or IL-13-induced human immunoglobulin G6 (IgG4) and IgE synthesis and B cell proliferation: support for a common component shared by IL-4 and IL-13. J Exp Med 1993; 178: 2213–8

    Article  PubMed  CAS  Google Scholar 

  75. Hellman L. Characterization of four novel ɛ chain mRNA and a comparative analysis of genes for immunoglobulin E in rodents and man. Eur J Immunol 1993; 23: 159–67

    Article  PubMed  CAS  Google Scholar 

  76. Hagan P, Blumenthal UJ, Dunn D, et al. Human IgE, IgG4 and resistance to infection with Schistosoma haematobium. Nature 1991; 349: 243–5

    Article  PubMed  CAS  Google Scholar 

  77. Dunne DW, Butterworth AE, Fulford AJC, et al. Immunity after treatment of human schistosomiasis: association between IgE antibodies to adult worm antigens and resistance to infection. Eur J Immunol 1992; 22: 1483–94

    Article  PubMed  CAS  Google Scholar 

  78. Sutton BJ, Gould HJ. The human IgE network. Nature 1993; 366: 421–8

    Article  PubMed  CAS  Google Scholar 

  79. Heyman B, Tianmin L, Gustavsson S. In vivo enhancement of the specific antibody response via the low-affinity receptor for IgE. Eur J Immunol 1993; 23: 1739–42

    Article  PubMed  CAS  Google Scholar 

  80. Kühn R, Rajevsky K, Müller W. Generation and analysis of IL-4 deficient mice. Science 1991; 254: 707–10

    Article  PubMed  Google Scholar 

  81. Haba S, Nisonoff A. Inhibition of IgE synthesis by anti-IgE: role of long-term inhibition of IgE synthesis by neonatally administered soluble IgE. Proc Natl Acad Sci USA 1990; 87: 3363–7

    Article  PubMed  CAS  Google Scholar 

  82. Hellman L. Profound reduction in allergen sensitivity following treatment with a novel allergy vaccine. Eur J Immunol 1994; 24: 415–20

    Article  PubMed  CAS  Google Scholar 

  83. Levy DA, Chen J. Healthy IgE-deficient person. N Engl J Med 1970; 283: 541

    PubMed  CAS  Google Scholar 

  84. Helm B, Marsh P, Vercelli D, et al. The mast cell binding site on human immunoglobulin E. Nature 1988; 331: 180–3

    Article  PubMed  CAS  Google Scholar 

  85. Helm B, Kebo D, Vercelli D, et al. Blocking of passive sensitization of human mast cells and basophil granulocytes with IgE antibodies by a recombinant human ɛ-chain fragment of 76 amino acids. Proc Natl Acad Sci USA 1989; 86: 9465–9

    Article  PubMed  CAS  Google Scholar 

  86. Presta LG, Lahr SJ, Shields RL, et al. Humanization of an antibody directed against IgE. J Immunol 1993; 151: 2623–32

    PubMed  CAS  Google Scholar 

  87. Chang TW, Davis FM, Sun N-C, et al. Monoclonal antibodies specific for human IgE-producing B-cells: a potential therapeutic for IgE-mediated allergic diseases. Bio/Technology 1990; 8: 122–6

    Article  PubMed  CAS  Google Scholar 

  88. Davis FM, Gossett LA, Pinkston KL, et al. Can anti-IgE be used to treat allergy? Springer Semin Immunopathol 1993; 15: 51–73

    Article  PubMed  CAS  Google Scholar 

  89. Froehlich J, Schoenhoff M, Jardieu P, et al. Multiple doses of a recombinant humanized monoclonal anti IgE antibody are safely tolerated and decreased free serum IgE to undetectable levels [abstract no. 863]. J Allergy Clin Immunol 1995; 95: 356

    Google Scholar 

  90. Bates D, Ruppel J, Fei BAD, et al. Pharmacokinetics/dynamics following administration of recombinant humanized monoclonal anti IgE antibody in Cynomolgus monkey [abstract no. 864]. J Allergy Clin Immunol 1995; 95: 365

    Google Scholar 

  91. Haba S, Nisonoff A. Induction of high titers of anti-IgE by immunization of inbred mice with syngeneic IgE. Proc Natl Acad Sci USA 1987; 84: 5009–13

    Article  PubMed  CAS  Google Scholar 

  92. Haba S, Nisonoff A. Immunological responsiveness of neonatal A/J mice to isotypic determinants of syngeneic IgE. J Exp Med 1988; 168: 713–24

    Article  PubMed  CAS  Google Scholar 

  93. Haba S, Nisonoff A. Role of antibody and T cells in the long-term inhibition of IgE synthesis. Proc Natl Acad Sci USA 1994; 91: 604–8

    Article  PubMed  CAS  Google Scholar 

  94. Haba S, Nisonoff A. Effect of syngeneic anti-IgE antibodies on the development of IgE memory and on the secondary IgE response. J Immunol 1994; 152: 51–7

    PubMed  CAS  Google Scholar 

  95. Marshall JS, Bell EB. Induction of an auto-anti-IgE response in rats. I. Effects on serum IgE concentrations. Eur J Immunol 1985; 15: 272–7

    Article  PubMed  CAS  Google Scholar 

  96. Marshall JS, Prout SJ, Jaffery G, et al. Induction of an auto-anti-IgE response in rats. II. Effects on mast cell populations. Eur J Immunol 1987; 17: 445–51

    Article  PubMed  CAS  Google Scholar 

  97. Marshall JS, Bell EB. Induction of an auto-anti-IgE response in rats. III. Inhibition of a specific IgE response. Immunology 1989; 66: 428–33

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hellman, L., Carlsson, M. Allergy Vaccines. Clin. Immunother. 6, 130–142 (1996). https://doi.org/10.1007/BF03259509

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03259509

Keywords

Navigation