Skip to main content
Log in

Effect of nifedipine on depolarization-induced force responses in skinned skeletal muscle fibres of rat and toad

  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Summary

The effect of the dihydropyridine, nifedipine, on excitation-contraction coupling was compared in toad and rat skeletal muscle, using the mechanically skinned fibre technique, in order to understand better the apparently disparate results of previous studies and to examine recent proposals on the importance of certain intracellular factors in determining the efficacy of dihydropyridines. In twitch fibres from the iliofibularis muscle of the toad, 10 μM nifedipine completely inhibited depolarization-induced force responses within 30 s, without interfering with direct activation of the Ca2+-release channels by caffeine application or reduction of myoplasmic [Mg2+]. At low concentrations of nifedipine, inhibition was considerably augmented by repeated depolarizations, with half-maximal inhibition occurring at <0.1 μM nifedipine. In contrast, in rat extensor digitorum longus (EDL) fibres 1 μM nifedipine had virtually no effect on depolarization-induced force responses, and 10 μM nifedipine caused only ∼25% reduction in the responses, even upon repeated depolarizations. In rat fibres, 10 μM nifedipine shifted the steady-state force inactivation curve to more negative potentials by <11 mV, whereas in toad fibres the potent inhibitory effect of nifedipine indicated a much larger shift. The inhibitory effect of nifedipine in rat fibres was little, if at all, increased by the absence of Ca2+ in the transverse tubular (t−) system, provided that the Ca2+ was replaced with sufficient Mg2+. The presence of the reducing agents dithiothreitol (10 mM) or glutathione (10 mM) in the solution bathing a toad skinned fibre did not reduce the inhibitory effect of nifedipine, suggesting that the potency of nifedipine in toad skinned fibres was not due to the washout of intracellular reducing agents. The results are considered in terms of a model that can account for the markedly different effects of nifedipine on the two putative functions of the dihydropyridine receptor, as both t-system calcium channel and a voltage-sensor controlling Ca2+ release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ADAMS, B. A. & BEAM, K. G. (1989) A novel calcium current in dysgenic skeletal muscle. J. Gen. Physiol. 94, 429–44.

    Article  PubMed  CAS  Google Scholar 

  • BRANDT, N. R., KAWAMOTO, R. M. & CASWELL, A. H. (1985) Effects of mercaptans upon dihydropyridine binding sites on transverse tubules isolated from triads of rabbit skeletal muscle. Biochem. Biophys. Res. Commun. 127, 205–12.

    Article  PubMed  CAS  Google Scholar 

  • CHAUDHARI, N. & BEAM, K. G. (1993) mRNA for cardiac calcium channels is expressed during development of skeletal muscle. Dev. Biol. 155, 507–15.

    Article  PubMed  CAS  Google Scholar 

  • COGNARD, C., RIVET, M. & RAYMOND, G. (1990) The blockade of excitation/contraction coupling by nifedipine in patch-clamped rat skeletal muscle cells in culture. Pflügers Arch. 416, 98–105.

    Article  PubMed  CAS  Google Scholar 

  • COGNARD, C., ROMEY, G., GALIZZI, J. P., FOSSET, M. & LAZDUNSKI, M. (1986) Dihydropyridine-sensitive Ca2+ channels in mammalian skeletal muscle cells in culture: electrophysiological properties and interactions with Ca2+ channel activator (BayK8644) and inhibitor (PN200-110). Proc. Natl Acad. Sci. USA 83, 1518–22.

    Article  PubMed  CAS  Google Scholar 

  • DORRSCHEIDT-KÄFER, M. (1976) The action of Ca2+, Mg2+ and H+ on the contraction threshold of frog skeletal muscle. Pflügers Arch. 362, 33–41.

    Article  PubMed  Google Scholar 

  • DULHUNTY, A. F. & GAGE, P. W. (1988) Effects of extracellular calcium concentration and dihydropyridines on contraction in mammalian skeletal muscle. J. Physiol. 399, 63–80.

    PubMed  CAS  Google Scholar 

  • DUNN, S. M. J. & BLADEN, C. (1991) Kinetics of binding of dihydropyridine calcium channel ligands to skeletal muscle membranes: evidence for low-affinity sites and for involvement of G proteins. Biochem. 30, 5716–21.

    Article  CAS  Google Scholar 

  • FELDMEYER, D., MELZER, W., POHL, B. & ZÖLLNER, P. (1992) Modulation of calcium current gating in frog skeletal muscle by conditioning depolarization. J. Physiol. 457, 639–53.

    PubMed  CAS  Google Scholar 

  • FILL, M. D. & BEST, P. M. (1989) Block of contracture in skinned frog skeletal muscle fibers by calcium antagonists. J. Gen. Physiol. 93, 429–49.

    Article  PubMed  CAS  Google Scholar 

  • FLEIG, A., TAKESHIMA, H. & PENNER, R. (1996) Absence of Ca2+ facilitation in skeletal muscle of transgenic mice lacking the type 1 ryanodine receptor. J. Physiol. 496, 339–45.

    PubMed  CAS  Google Scholar 

  • GALLANT, E. M. & GOETTL, V. M. (1985) Effects of calcium antagonists on mechanical responses of mammalian skeletal muscles. Eur. J. Pharmacol. 117, 259–65.

    Article  PubMed  CAS  Google Scholar 

  • GAMBOA-ALDECO, R., HUERTA, M. & STEFANI, E. (1988) Effect of Ca2+ channel blockers on K+ contractures in twitch fibres of the frog (Rana pipiens). J. Physiol. 397, 389–99.

    PubMed  CAS  Google Scholar 

  • GARCIA, J., GAMBOA-ALDECO, R. & STEFANI, E. (1990) Charge movement and calcium currents in skeletal muscle fibers are enhanced by GTPγS. Pflügers Arch. 417, 114–16.

    Article  PubMed  CAS  Google Scholar 

  • GARCIA, J., TANABE, T. & BEAM, K. G. (1994) Relationship of calcium transients to calcium currents and charge movements in myotubes expressing skeletal and cardiac dihydropyridine receptors. J. Gen. Physiol. 103, 125–47.

    Article  PubMed  CAS  Google Scholar 

  • KASS, R. S., ARENA, J.P. & CHIN, S. (1991) Block of L-type calcium channels by charged dihydropyridines. J. Gen. Physiol. 98, 63–75.

    Article  PubMed  CAS  Google Scholar 

  • KITAMURA, N., OHTA, T., ITO, S. & NAKAZATO, Y. (1994) Effects of nifedipine and Bay K 8644 on contractile activities in single skeletal muscle fibers of the frog. Eur. J. Pharmacol. 256, 169–76.

    Article  PubMed  CAS  Google Scholar 

  • LAMB, G. D. (1986) Components of charge movement in rabbit skeletal muscle: the effect of tetracine and nifedipine. J. Physiol. 376, 85–100.

    PubMed  CAS  Google Scholar 

  • LAMB, G. D. (1992) DHP receptors and excitation-contraction coupling. J. Muscle Res. Cell Motif. 13, 394–405.

    Article  CAS  Google Scholar 

  • LAMB, G. D., JUNANKAR. P. R. & STEPHENSON, D. G. (1995) Raised intracellular [Ca2+] abolishes excitation-contraction coupling in skeletal muscle fibres of rat and toad. J. Physiol. 489, 349–62.

    PubMed  CAS  Google Scholar 

  • LAMB, G. D. & STEPHENSON, D. G. (1990) Calcium release in skinned muscle fibres of the toad by transverse tubule depolarization or by direct stimulation. J. Physiol. 423, 495–517.

    PubMed  CAS  Google Scholar 

  • LAMB, G. D. & STEPHENSON, D. G. (1991a) Excitation-contraction coupling in skeletal muscle fibres of rat and toad in the presence of GTPγS. J. Physiol. 444, 65–84.

    PubMed  CAS  Google Scholar 

  • LAMB, G. D. & STEPHENSON, D. G. (1991b) Effect of Mg2+ on the control of Ca2+ release in skeletal muscle fibres of the toad. J. Physiol. 434, 507–28.

    PubMed  CAS  Google Scholar 

  • LAMB, G. D. & STEPHENSON, D. G. (1994) Effects of intracellular pH and [Mg2+] on excitation-contraction coupling in skeletal muscle fibres of the rat. J. Physiol. 478, 331–9.

    PubMed  CAS  Google Scholar 

  • LAMB, G. D. & WALSH, T. (1987) Calcium currents, charge movement and dihydropyridine binding in fast- and slow-twitch muscles of rat and rabbit. J. Physiol. 393, 595–617.

    PubMed  CAS  Google Scholar 

  • MCCLESKEY, E. W. (1985) Calcium channels and intracellular calcium release are pharmacologically different in frog skeletal muscle. J. Physiol. 361, 231–49.

    PubMed  CAS  Google Scholar 

  • MELZER, W., HERRMANN-FRANK, A. & LUTTGAU, H. Ch. (1995) The role of Ca2+ ions in excitation-contraction coupling of skeletal muscle fibres. Biochim. Biophys. Acta 1241, 59–l16.

    Article  PubMed  Google Scholar 

  • MÉRY, P.-F., HOVE-MADSEN, L., MAZET, J. -L., HANF, R. & FISCHMEISTER, R. (1996) Binding constants determined from Ca2+ current responses to rapid applications and washouts of nifedipine in frog cardiac myocytes. J. Physiol. 494, 105–20.

    PubMed  Google Scholar 

  • MURPHY, B. J., WASHKURAK, A. W. & TUANA, B.S. (1990) Dihydropyridine binding to the L-type Ca2+ channel in rabbit heart sarcolemma and skeletal muscle transverse-tubules: role of disulphide, sulfhydryl and phosphate groups. Biochim. Biophys. Acta 1052, 333–9.

    Article  PubMed  CAS  Google Scholar 

  • NEUHAUS, R., ROSENTHAL, R. & LÜTTGAU, H. Ch. (1990) The effects of dihydropyridine derivatives on force and Ca2+ current in frog skeletal muscle fibres. J. Physiol. 427, 187–209.

    PubMed  CAS  Google Scholar 

  • OWEN, V. J., LAMB, G. D., STEPHENSON, D. G. & FRYER, M. W. (1997) Relationship between depolarization-induced force responses and Ca2+ content in skeletal muscle fibres of rat and toad. J. Physiol. 498, 571–86.

    PubMed  CAS  Google Scholar 

  • PETERSON, B. Z. & CATTERALL, W. A. (1995) Calcium binding in the pore of L-type calcium channels modulates high affinity dihydropyridine binding. J. Biol. Chem. 270, 18201–4.

    Article  PubMed  CAS  Google Scholar 

  • PIZARRO, G., BRUM, G., FILL, M., FITTS, R., RODRIGUEZ, I., URIBE, I. & RIOS, E. (1988) The voltage sensor of skeletal muscle excitation-contraction coupling: a comparison with Ca2+ channels. In The Ca Channel: Structure, Function and Implications (edited by MORAD, M., NAYLER, W., KAZDA, S. & SCHRAMM, M.) pp. 38–157. Berlin: Springer-Verlag.

    Google Scholar 

  • POSTERINO, G. S. & LAMB, G. D. (1996) Effects of reducing agents and oxidants on excitation-contraction coupling in skeletal muscle fibres of rat and toad. J. Physiol. 496, 809–25.

    PubMed  CAS  Google Scholar 

  • RIOS, E. & BRUM, G. (1987) Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle. Nature 325, 717–20.

    Article  PubMed  CAS  Google Scholar 

  • SCHILLING, W. P. (1988) Effect of divalent cation chelation on dihydropyridine binding in isolated cardiac sarcolemma vesicles. Biochim. Biophys. Acta 943, 220–30.

    Article  PubMed  CAS  Google Scholar 

  • SCHWARTZ, L. M., MCCLESKEY, E. W. & ALMERS, W. (1985) Dihydropyridine receptors in muscle are voltage-dependent but most are not functional calcium channels. Nature 314, 747–51.

    Article  PubMed  CAS  Google Scholar 

  • STRÜBING, C., HERING, S. & GLOSSMANN, H. (1993) Evidence for an external location of the dihydropyridine agonist receptor site on smooth muscle and skeletal muscle calcium channels. Br. J. Pharmacol. 108, 884–91.

    Article  PubMed  Google Scholar 

  • SUDA, N. (1995) Involvement of dihydropyridine receptors in terminating Ca2+ release in rat skeletal myotubes. J. Physiol. 486, 105–12.

    PubMed  CAS  Google Scholar 

  • TAKEKURA, H., NISHI, M., NODA, T., TAKESHIMA, H. & FRANZINI-ARMSTRONG, C. (1995) Abnormal junctions between surface membrane and sarcoplasmic reticulum in skeletal muscle with a mutation targeted to the ryanodine receptor. Proc. Natl Acad. Sci. USA 92, 3381–5.

    Article  PubMed  CAS  Google Scholar 

  • TANABE, T., BEAM, K. G., POWELL, J. A. & NUMA, S. (1988) Restoration of excitation-contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA. Nature 336, 134–9.

    Article  PubMed  CAS  Google Scholar 

  • VALDIVIA, H. H. & CORONADO, R. (1990) Internal and external effects of dihydropyridines in the calcium channel of skeletal muscle. J. Gen. Physiol. 95, 1–27.

    Article  PubMed  CAS  Google Scholar 

  • YANG, J., ELLINOR, P. T., SATHER, W. A., ZHANG, J.-F. & TSIEN, R. W. (1993) Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels. Nature 366, 158–61.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Posterino, G.S., Lamb, G.D. Effect of nifedipine on depolarization-induced force responses in skinned skeletal muscle fibres of rat and toad. Journal of Muscle Research and Cell Motility 19, 53–65 (1998). https://doi.org/10.1007/BF03257390

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03257390

Keywords

Navigation