Skip to main content
Log in

Diagnostics for Herpes Simplex Virus

Is PCR the New Gold Standard?

  • Infectious Diseases
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Herpes simplex virus (HSV) is one of the most common, yet frequently overlooked, sexually transmitted infections. Since the type of HSV infection affects prognosis and subsequent counseling, type-specific testing to distinguish HSV-1 from HSV-2 is recommended. Although PCR has been the diagnostic standard for HSV infections of the central nervous system, until now viral culture has been the test of choice for HSV genital infection. However, HSV PCR, with its consistently and substantially higher rate of HSV detection, will likely replace viral culture as the gold standard for the diagnosis of genital herpes in people with active mucocutaneous lesions, regardless of anatomic location or viral type. Alternatively, type-specific serologic tests based on glycoprotein G should be the test of choice to establish the diagnosis of HSV infection when no active lesion is present. Given the difficulty in making the clinical diagnosis of HSV, the growing worldwide prevalence of genital herpes and the availability of effective antiviral therapy, there is an increased demand for rapid, accurate laboratory diagnosis of patients with HSV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II

Similar content being viewed by others

References

  1. Center for Disease Control and Prevention. Genital herpes: CDC fact sheet[online]. Available from URL: http://www.cdc.gov/std/Herpes/STDFact-Herpes.htm [Accessed 2005 Oct 10]

  2. Fleming D, McQuillan G, Johnson R, et al. Herpes simplex virus type 2 in theUnited States, 1976 to 1994. N Engl J Med 1997; 337: 1105–11

    Article  PubMed  CAS  Google Scholar 

  3. Ahmed H, Mbwana J, Gunnarsson E, et al. Etiology of genital ulcer disease andassociation with human immunodeficiency virus infection in two Tanzaniancities. Sex Transm Dis 2003; 30(2): 114–9

    Article  PubMed  Google Scholar 

  4. Beyrer C, Jitwatcharanan K, Natpratan C, et al. Molecular methods for thediagnosis of genital ulcer disease in a sexually transmitted disease clinicpopulation in northern Thailand: predominance of herpes simplex virus infection.J Infect Dis 1998; 178(1): 243–6

    Article  PubMed  CAS  Google Scholar 

  5. Chen C, Ballard R, Beck-Sague C, et al. Human immunodeficiency virus infectionand genital ulcer disease in South Africa: the herpetic connection. Sex TransmDis 2000; 27: 21–9

    Article  CAS  Google Scholar 

  6. Corey L. Herpes simplex type 2 infection in the developing world: is it time toaddress this disease? Sex Transm Dis 2000 Jan; 27(1): 30–1

    Article  PubMed  CAS  Google Scholar 

  7. Corey L, Handsfield HH. Genital herpes and public health: addressing a globalproblem. JAMA 2000 Feb 9; 283(6): 791–4

    Article  PubMed  CAS  Google Scholar 

  8. Risbud A, Chan-Tack K, Gadkari D, et al. The etiology of genital ulcer disease bymultiplex polymerase chain reaction and relationship to HIV infection amongpatients attending sexually transmitted disease clinics in Pune, India. SexTransm Dis 1999 Jan; 26(1): 55–62

    CAS  Google Scholar 

  9. Langenberg AG, Corey L, Ashley RL, et al. A prospective study of new infectionswith herpes simplex virus type 1 and type 2. Chiron HSV Vaccine Study Group.N Engl J Med 1999 Nov 4; 341(19): 1432–8

    Article  PubMed  CAS  Google Scholar 

  10. Wald A, Zeh J, Selke S, et al. Virologic characteristics of subclinical and symptomaticgenital herpes infections. N Engl J Med 1995 Sep 21; 333(12): 770–5

    Article  PubMed  CAS  Google Scholar 

  11. Brown Z, Benedetti J, Ashley R, et al. Neonatal herpes simplex virus infection inrelation to asymptomatic maternal infection at the time of labor. N Engl J Med1991; 324: 1247–52

    Article  PubMed  CAS  Google Scholar 

  12. Mertz G, Schmidt O, Jourden J, et al. Frequency of acquisition of first-episodegenital infection with herpes simplex virus from symptomatic and asymptomaticsource contacts. Sex Transm Dis 1985; 12: 33–9

    Article  PubMed  CAS  Google Scholar 

  13. Mullan HM, Munday PE. The acceptability of the introduction of a type specificherpes antibody screening test into a genitourinary medicine clinic in the UnitedKingdom. Sex Transm Infect 2003 Apr; 79(2): 129–33

    Article  PubMed  CAS  Google Scholar 

  14. Cowan F, Johnson A, Ashley R, et al. Antibody to herpes simplex virus type 2 asserological marker of sexual lifestyle in populations. BMJ 1994 Nov 19; 309(6965): 1325–9

    Article  PubMed  CAS  Google Scholar 

  15. Strick L, Wald A. Type-specific testing for herpes simplex virus. Expert Rev MolDiagn 2004; 4(4): 443–53

    Article  CAS  Google Scholar 

  16. Lafferty W. The changing epidemiology of HSV-1 and HSV-2 and implications forserological testing. Herpes 2002; 9(2): 51–5

    PubMed  Google Scholar 

  17. Lafferty W, Downey L, Celum C, et al. Herpes simplex virus type 1 as a cause ofgenital herpes: impact on surveillance and prevention. J Infect Dis 2000; 181:1454–7

    Article  PubMed  CAS  Google Scholar 

  18. Ribes J, Steele A, Seabolt J, et al. Six-year study of the incidence of herpes ingenital and nongenital cultures in a central Kentucky medical center patientpopulation. J Clin Microbiol 2001; 39(9): 3321–5

    Article  PubMed  CAS  Google Scholar 

  19. Ross J, Smith J, Elton R. The epidemiology of herpes simplex types 1 and 2infection of the genital tract in Edinburgh 1978–1991. Genitourin Med 1993;69: 381–3

    PubMed  CAS  Google Scholar 

  20. Scoular A, Leask B, Carrington D. Changing trends in genital herpes due to herpessimplex virus type 1 in Glasgow, 1985–88. Genitourin Med 1990; 66: 226

    PubMed  CAS  Google Scholar 

  21. Vyse A, Gay N, Slomka M, et al. The burden of infection with HSV-1 and HSV-2in England and Wales: implications for the changing epidemiology of genitalherpes. Sex Transm Infect 2000; 76: 183–7

    Article  PubMed  CAS  Google Scholar 

  22. Benedetti J, Corey L, Ashley R. Recurrence rates in genital herpes after symptomaticfirst-episode infection. Ann Intern Med 1994 Dec 1; 121(11): 847–54

    PubMed  CAS  Google Scholar 

  23. Koutsky L, Stevens C, Holmes K, et al. Underdiagnosis of genital herpes by currentclinical and viral-isolation procedures. N Engl J Med 1992; 326: 1533–9

    Article  PubMed  CAS  Google Scholar 

  24. Sucato G, Wald A, Wakabayashi E, et al. Evidence of latency and reactivation ofboth herpes simplex virus (HSV-1) and HSV-2 in the genital region. J Infect Dis1998; 177: 1069–72

    Article  PubMed  CAS  Google Scholar 

  25. Sexually transmitted diseases treatment guidelines 2002. Center for Disease Controland Prevention. MMWR Recomm Rep 2002 May 10; 51(RR-6): 1–78

    Google Scholar 

  26. Chibo D, Julian D, Sasadeusz J, et al. Molecular analysis of clinical isolates ofacyclovir resistance herpes simplex virus. Antiviral Res 2004; 61: 83–91

    Article  PubMed  CAS  Google Scholar 

  27. Kriesel JD, Spruance SL, Prichard M, et al. Recurrent antiviral-resistant genitalherpes in an immunocompetent patient. J Infect Dis 2005 Jul 1; 192: 156–61

    Article  PubMed  Google Scholar 

  28. Sasadeusz JJ, Tufaro R, Safrin S, et al. Homopolymer mutational hot spots mediateherpes simplex virus resistance to acyclovir. J Virol 1997 May; 71(5): 3872–8

    PubMed  CAS  Google Scholar 

  29. Wald A, Zeh J, Barnum G, et al. Suppression of subclinical shedding of herpessimplex virus type 2 with acyclovir. Ann Intern Med 1996 Jan 1; 124 (1 Pt 1):8–15

    PubMed  CAS  Google Scholar 

  30. Wald A, Huang ML, Carrell D, et al. Polymerase chain reaction for detection ofherpes simplex virus (HSV) DNA on mucosal surfaces: comparison with HSVisolation in cell culture. J Infect Dis 2003 Nov 1; 188(9): 1345–51

    Article  PubMed  CAS  Google Scholar 

  31. Orle KA, Gates CA, Martin DH, et al. Simultaneous PCR detection of Haemophilusducreyi, Treponema pallidum, and herpes simplex virus types 1 and 2 fromgenital ulcers. J Clin Microbiol 1996 Jan; 34(1): 49–54

    PubMed  CAS  Google Scholar 

  32. Safrin S, Shaw H, Bolan G, et al. Comparison of virus culture and the polymerasechain reaction for diagnosis of mucocutaneous herpes simplex virus infection.Sex Transm Dis 1997 Mar; 24(3): 176–80

    Article  PubMed  CAS  Google Scholar 

  33. Morse SA, Trees DL, Htun Y, et al. Comparison of clinical diagnosis and standardlaboratory and molecular methods for the diagnosis of genital ulcer disease inLesotho: association with human immunodeficiency virus infection. J InfectDis 1997 Mar; 175(3): 583–9

    Article  CAS  Google Scholar 

  34. Slomka MJ, Emery L, Munday PE, et al. A comparison of PCR with virus isolationand direct antigen detection for diagnosis and typing of genital herpes. J MedVirol 1998 Jun; 55(2): 177–83

    CAS  Google Scholar 

  35. Waldhuber MG, Denham I, Wadey C, et al. Detection of herpes simplex virus ingenital specimens by type-specific polymerase chain reaction. Int J STD AIDS1999 Feb; 10(2): 89–92

    Article  PubMed  CAS  Google Scholar 

  36. Coyle PV, Desai A, Wyatt D, et al. A comparison of virus isolation, indirectimmunofluorescence and nested multiplex polymerase chain reaction for thediagnosis of primary and recurrent herpes simplex type 1 and type 2 infections.J Virol Methods 1999 Dec; 83(1-2): 75–82

    Article  PubMed  CAS  Google Scholar 

  37. Ryncarz AJ, Goddard J, Wald A, et al. Development of a high-throughput quantitativeassay for detecting herpes simplex virus DNA in clinical samples. J ClinMicrobiol 1999 Jun; 37(6): 1941–7

    CAS  Google Scholar 

  38. Markoulatos P, Georgopoulou A, Kotsovassilis C, et al. Detection and typing ofHSV-1, HSV-2, and VZV by a multiplex polymerase chain reaction. J Clin LabAnal 2000; 14(5): 214–9

    Article  CAS  Google Scholar 

  39. Espy MJ, Ross TK, Teo R, et al. Evaluation of LightCycler PCR for implementationof laboratory diagnosis of herpes simplex virus infections. J Clin Microbiol2000 Aug; 38(8): 3116–8

    PubMed  CAS  Google Scholar 

  40. Espy MJ, Uhl JR, Mitchell PS, et al. Diagnosis of herpes simplex virus infections inthe clinical laboratory by LightCycler PCR. J Clin Microbiol 2000 Feb; 38(2):795–9

    PubMed  CAS  Google Scholar 

  41. Marshall DS, Linfert DR, Draghi A, et al. Identification of herpes simplex virusgenital infection: comparison of a multiplex PCR assay and traditional viralisolation techniques. Mod Pathol 2001 Mar; 14(3): 152–6

    Article  PubMed  CAS  Google Scholar 

  42. Coyle PV, O’Neill HJ, McCaughey C, et al. Clinical utility of a nested nucleic acidamplification format in comparison to viral culture for the diagnosis of mucosalherpes simples infection in a genitourinary medicine setting. BMC Infect Dis2001; 1(11): 1471–2334

    Google Scholar 

  43. Espy MJ, Rys PN, Wold AD, et al. Detection of herpes simplex virus DNA ingenital and dermal specimens by LightCycler PCR after extraction using theIsoQuick, MagNA Pure, and BioRobot 9604 methods. J Clin Microbiol 2001Jun; 39(6): 2233–6

    Article  PubMed  CAS  Google Scholar 

  44. Nicoll S, Brass A, Cubie HA. Detection of herpes viruses in clinical samples usingreal-time PCR. J Virol Methods 2001; 96: 25–31

    Article  PubMed  CAS  Google Scholar 

  45. Druce J, Catton M, Chibo D, et al. Utility of a multiplex PCR assay for detectingherpesvirus DNA in clinical samples. J Clin Microbiol 2002 May; 40(5):1728–32

    Article  PubMed  CAS  Google Scholar 

  46. Scoular A, Gillespie G, Carman WF. Polymerase chain reaction for diagnosis ofgenital herpes in a genitourinary medicine clinic. Sex Transm Infect 2002 Feb;78(1): 21–5

    Article  PubMed  CAS  Google Scholar 

  47. Burrows J, Nitsche A, Bayly B, et al. Detection and subtyping of Herpes simplexvirus in clinical samples by LightCycler PCR, enzyme immunoassay and cellculture. BMC Microbiol 2002 Jun 9; 2(1): 12

    Article  PubMed  Google Scholar 

  48. van Doornum GJ, Guldemeester J, Osterhaus AD, et al. Diagnosing herpesvirusinfections by real-time amplification and rapid culture. J Clin Microbiol 2003Feb; 41(2): 576–80

    Article  PubMed  CAS  Google Scholar 

  49. Mengelle C, Sandres-Saune K, Miedouge M, et al. Use of two real-time polymerasechain reactions (PCRs) to detect herpes simplex type 1 and 2-DNA afterautomated extraction of nucleic acid. J Med Virol 2004 Nov; 74(3): 459–62

    Article  PubMed  CAS  Google Scholar 

  50. Ramaswamy M, McDonald C, Smith M, et al. Diagnosis of genital herpes by realtime PCR in routine clinical practice. Sex Transm Infect 2004 Oct; 80(5):406–10

    Article  PubMed  CAS  Google Scholar 

  51. Kimberlin DW, Lakeman FD, Arvin AM, et al. Application of the polymerasechain reaction to the diagnosis and management of neonatal herpes simplexvirus disease. National Institute of Allergy and Infectious Diseases CollaborativeAntiviral Study Group. J Infect Dis 1996 Dec; 174(6): 1162–7

    Article  PubMed  CAS  Google Scholar 

  52. Mitchell PS, Espy MJ, Smith TF, et al. Laboratory diagnosis of central nervoussystem infections with herpes simplex virus by PCR performed with cerebrospinalfluid specimens. J Clin Microbiol 1997 Nov; 35(11): 2873–7

    PubMed  CAS  Google Scholar 

  53. Whitley RJ, Lakeman F. Herpes simplex virus infections of the central nervoussystem: therapeutic and diagnostic considerations. Clin Infect Dis 1995 Feb; 20(2): 414–20

    Article  PubMed  CAS  Google Scholar 

  54. Cinque P, Cleator GM, Weber T, et al. The role of laboratory investigation in thediagnosis and management of patients with suspected herpes simplex encephalitis:a consensus report. The EU Concerted Action on Virus Meningitis andEncephalitis. J Neurol Neurosurg Psychiatry 1996 Oct; 61(4): 339–45

    Article  PubMed  CAS  Google Scholar 

  55. Whitley RJ. Viral encephalitis. N Engl J Med 1990 Jul 26; 323(4): 242–50

    Article  PubMed  CAS  Google Scholar 

  56. Revello MG, Baldanti F, Sarasini A, et al. Quantitation of herpes simplex virusDNA in cerebrospinal fluid of patients with herpes simplex encephalitis by thepolymerase chain reaction. Clin Diagn Virol 1997 Feb; 7(3): 183–91

    Article  PubMed  CAS  Google Scholar 

  57. Aslanzadeh J, Osmon DR, Wilhelm MP, et al. A prospective study of the polymerasechain reaction for detection of herpes simplex virus in cerebrospinal fluidsubmitted to the clinical virology laboratory. Mol Cell Probes 1992 Oct; 6(5):367–73

    Article  PubMed  CAS  Google Scholar 

  58. Rose JW, Stroop WG, Matsuo F, et al. Atypical herpes simplex encephalitis:clinical, virologic, and neuropathologic evaluation. Neurology 1992 Sep; 42(9): 1809–12

    Article  PubMed  CAS  Google Scholar 

  59. Rowley AH, Whitley RJ, Lakeman FD, et al. Rapid detection of herpes simplexvirus DNA in cerebrospinal fluid of patients with herpes simplex encephalitis.Lancet 1990; 335: 440–1

    Article  PubMed  CAS  Google Scholar 

  60. Lakeman FD, Whitley RJ. Diagnosis of herpes simplex encephalitis: application ofpolymerase chain reaction to cerebrospinal fluid from brain-biopsied patientsand correlation with disease. National Institute of Allergy and InfectiousDiseases Collaborative Antiviral Study Group. J Infect Dis 1995; 171: 857–63

    Article  PubMed  CAS  Google Scholar 

  61. Puchhammer-Stöckl E, Presteri E, Croy C, et al. Screening for possible failure ofherpes simplex virus PCR in cerebrospinal fluid for the diagnosis of herpessimplex encephalitis. J Med Virol 2001; 64(4): 531–6

    Article  PubMed  Google Scholar 

  62. Cone RW, Hobson AC, Palmer J, et al. Extended duration of herpes simplex virusDNA in genital lesions detected by the polymerase chain reaction. J Infect Dis1991 Oct; 164(4): 757–60

    Article  PubMed  CAS  Google Scholar 

  63. Jerome KR, Huang ML, Wald A, et al. Quantitative stability of DNA afterextended storage of clinical specimens as determined by real-time PCR. J ClinMicrobiol 2002 Jul; 40(7): 2609–11

    Article  CAS  Google Scholar 

  64. Scoular A. Using the evidence base on genital herpes: optimising the use ofdiagnostic tests and information provision. Sex Transm Infect 2002 Jun; 78(3):160–5

    Article  PubMed  CAS  Google Scholar 

  65. Wald A, Corey L, Cone R, et al. Frequent genital herpes simplex virus 2 sheddingin immunocompetent women: effect of acyclovir treatment. J Clin Invest 1997Mar1; 99(5): 1092–7

    Article  PubMed  CAS  Google Scholar 

  66. Cone RW, Hobson AC, Brown Z, et al. Frequent detection of genital herpessimplex virus DNA by polymerase chain reaction among pregnant women.JAMA 1994 Sep 14; 272(10): 792–6

    Article  PubMed  CAS  Google Scholar 

  67. Kessler HH, Pierer K, Weber B, et al. Detection of herpes simplex virus DNA fromcerebrospinal fluid by PCR and a rapid, nonradioactive hybridization technique.J Clin Microbiol 1994 Aug; 32(8): 1881–6

    PubMed  CAS  Google Scholar 

  68. Sakrauski A, Weber B, Kessler HH, et al. Comparison of two hybridization assaysfor the rapid detection of PCR amplified HSV genome sequences from cerebrospinalfluid. J Virol Methods 1994 Dec; 50(1-3): 175–84

    Article  PubMed  CAS  Google Scholar 

  69. Higuchi R, Dollinger G, Walsh PS, et al. Simultaneous amplification and detectionof specific DNA sequences. Nat Biotech 1992 Apr; 10(4): 413–7

    Article  CAS  Google Scholar 

  70. O’Neill HJ, Wyatt DE, Coyle PV, et al. Real-time nested multiplex PCR for thedetection of herpes simplex virus types 1 and 2 and varicella zoster virus. J MedVirol 2003 Dec; 71(4): 557–60

    Google Scholar 

  71. Wittwer CT, Herrmann MG, Moss AA, et al. Continuous fluorescence monitoringof rapid cycle DNA amplification. Biotechniques 1997 Jan; 22(1): 130–1,134-8

    PubMed  CAS  Google Scholar 

  72. Schalasta G, Arents A, Schmid M, et al. Fast and type-specific analysis of herpessimplex virus types 1 and 2 by rapid PCR and fluorescence melting-curve-analysis.Infection 2000 Mar–Apr; 28(2): 85–91

    Article  PubMed  CAS  Google Scholar 

  73. Ririe KM, Rasmussen RP, Wittwer CT. Product differentiation by analysis of DNAmelting curves during the polymerase chain reaction. Anal Biochem 1997 Feb15; 245(2): 154–60

    Article  PubMed  CAS  Google Scholar 

  74. Anderson TP, Werno AM, Beynon KA, et al. Failure to genotype herpes simplexvirus by real-time PCR assay and melting curve analysis due to sequencevariation within probe binding sites. J Clin Microbiol 2003 May; 41(5): 2135–7

    Article  PubMed  CAS  Google Scholar 

  75. Issa NC, Espy MJ, Uhl JR, et al. Sequencing and Resolution of amplified herpessimplex virus DNA with intermediate melting curves as genotype 1 or 2 byLightCycler PCR assay. J Clin Microbiol 2005 Apr; 43(4): 1843–5

    Article  PubMed  CAS  Google Scholar 

  76. Markoulatos P, Siafakas N, Moncany M. Multiplex polymerase chain reaction: apractical approach. J Clin Lab Anal 2002; 16: 47–51

    Article  PubMed  CAS  Google Scholar 

  77. Corey L, Huang ML, Selke S, et al. Differentiation of herpes simplex virus types 1and 2 in clinical samples by a real-time Taqman PCR assay. J Med Virol 2005Jul; 76(3): 350–5

    Article  PubMed  CAS  Google Scholar 

  78. Stocher M, Leb V, Bozic M, et al. Parallel detection of five human herpes virusDNAs by a set of real-time polymerase chain reactions in a single run. J ClinVirol 2003 Jan; 26(1): 85–93

    Article  CAS  Google Scholar 

  79. Chou S, Waldemer R, Senters A, et al. Cytomegalovirus UL97 phosphotransferasemutations that affect susceptibility to ganciclovir. J Infect Dis 2002; 185: 162–9

    Article  PubMed  CAS  Google Scholar 

  80. Shafer R. Genotypic testing for human immunodeficiency virus type 1 resistance.Clin Microbiol Rev 2002; 15: 247–77

    Article  PubMed  CAS  Google Scholar 

  81. ACOG practice bulletin. Management of herpes in pregnancy. Number 8 October1999. Clinical management guidelines for obstetrician-gynecologists. Int JGynaecol Obstet 2000 Feb; 68(2): 165–73

    Article  Google Scholar 

  82. Brown ZA, Wald A, Morrow RA, et al. Effect of serologic status and cesareandelivery on transmission rates of herpes simplex virus from mother to infant.JAMA 2003 Jan 8; 289(2): 203–9

    Article  PubMed  Google Scholar 

  83. Nahmias AJ, Josey W, Naib Z, et al. Perinatal risk associated with maternal genitalherpes simplex virus infection. Am J Obstet Gynecol 1971 Jul 15; 110(6):825–37

    PubMed  CAS  Google Scholar 

  84. Whitley RJ. Neonatal herpes simplex virus infections: pathogenesis and therapy.Pathol Biol (Paris) 1992 Sep; 40(7): 729–34

    CAS  Google Scholar 

  85. Stagno S, Whitley R. Herpesvirus infection of pregnancy: part II. Herpes simplexvirus and varicella-zoster infections. N Engl J Med 1985 Nov 21; 313(21):1327–30

    Article  PubMed  CAS  Google Scholar 

  86. Whitley RJ. Neonatal herpes simplex virus infections. Clin Perinatol 1988 Dec; 15(4): 903–16

    PubMed  CAS  Google Scholar 

  87. Nahmias AJ, Whitley RJ, Visintine AN, et al. Herpes simplex virus encephalitis:laboratory evaluations and their diagnostic significance. J Infect Dis 1982 Jun;145(6): 829–36

    Article  PubMed  CAS  Google Scholar 

  88. Malm G, Forsgren M, el Azazi M, et al. A follow-up study of children withneonatal herpes simplex virus infections with particular regard to late nervousdisturbances. Acta Paediatr Scand 1991 Feb; 80(2): 226–34

    Article  PubMed  CAS  Google Scholar 

  89. Corey L, Whitley RJ, Stone EF, et al. Difference between herpes simplex virus type1 and type 2 neonatal encephalitis in neurological outcome. Lancet 1988 Jan2-9; I(8575-6): 1–4

    Article  Google Scholar 

  90. Gardella C, Brown ZA, Wald A, et al. Poor correlation between genital lesions anddetection of herpes simplex virus in women in labor. Am J Obstet Gynecol 2005Aug; 106(2): 268–74

    Article  Google Scholar 

  91. Randolph A, Washington A, Prober C. Cesarean delivery for women presentingwith genital herpes lesions: efficacy, risks, and costs. JAMA 1993; 270: 77–82

    Article  PubMed  CAS  Google Scholar 

  92. Catalano P, Merritt A, Mead P. Incidence of genital herpes simplex virus at thetime of delivery in women with known risk factors. Am J Obstet Gynecol 1991;164 (5 Pt 1): 1301–6

    Google Scholar 

  93. Arvin A, Hensleigh P, Prober C, et al. Failure of antepartum maternal cultures topredict the infant’s risk of exposure to herpes simplex virus at delivery. N Engl JMed 1986 Sep 25; 315(13): 796–800

    Article  CAS  Google Scholar 

  94. Hardy DA, Arvin AM, Yasukawa LL, et al. Use of polymerase chain reaction forsuccessful identification of asymptomatic genital infection with herpes simplexvirus in pregnant women at delivery. J Infect Dis 1990 Nov; 162(5): 1031–5

    Article  PubMed  CAS  Google Scholar 

  95. Prober C, Corey L, Brown Z, et al. The management of pregnancies complicated bygenital infections with herpes simplex virus. Clin Infect Dis 1992; 15: 1031–8

    Article  PubMed  CAS  Google Scholar 

  96. Malm G, Forsgren M. Neonatal herpes simplex virus infections: HSV DNA incerebrospinal fluid and serum. Arch Dis Child Fetal Neonatal Ed 1999 Jul; 81(1): F24–9

    Article  PubMed  CAS  Google Scholar 

  97. Diamond C, Mohan K, Hobson A, et al. Viremia in neonatal herpes simplex virusinfections. Pediatr Infect Dis J 1999 Jun; 18(6): 487–9

    Article  PubMed  CAS  Google Scholar 

  98. Bale JF, Miner LJ. Herpes simplex virus infections of the newborn. Curr TreatOptions Neurol 2005 Mar; 7(2): 151–6

    Article  Google Scholar 

  99. Turnback P, Liljeqvest J, Lowhagen G, et al. Glycoprotein G of herpes simplextype 1: identification of type-specific epitopes by human antibodies. J GenVirol 2000; 81: 1033–40

    Google Scholar 

  100. Liljeqvest J, Trybala E, Svennerholm B, et al. Localization of type-specificepitopes of herpes simplex virus type 2 glycoprotein G recognized by humanand mouse antibodies. J Gen Virol 1998; 79: 1215–24

    Google Scholar 

  101. Marsden H, MacAulay K, Murray J, et al. Identification of an immunodominantsequential epitope in glycoprotein G of herpes simplex virus type 2 that is usefulfor serotype-specific diagnosis. J Med Virol 1998; 56: 79–84

    Article  PubMed  CAS  Google Scholar 

  102. Ashley R. Type-specific antibodies to HSV-1 and -2: review of methodology.Herpes 1998; 5: 33–8

    Google Scholar 

  103. Morrow R, Friedrich D. Inaccuracy of certain commercial enzyme immunoassaysin diagnosing genital infections with herpes simplex virus types 1 and 2. Am JClin Pathol 2003; 120(6): 839–44

    Article  Google Scholar 

  104. Ashley R, Cent A, Maggs V, et al. Inability of enzyme immunoassays to discriminatebetween infections with herpes simplex virus type 1 and 2. Ann Intern Med1991; 115: 520–6

    PubMed  CAS  Google Scholar 

  105. Martins T, Woolstenhulme R, Jaskowski T, et al. Comparison of four enzymeimmunoassays with a western blot assay for the determination of type-specificantibodies to herpes simplex virus. Am J Clin Pathol 2001; 115: 272–7

    Article  PubMed  CAS  Google Scholar 

  106. Ashley R. Performance and use of HSV type-specific serology test kits. Herpes2002; 9(2): 38–45

    PubMed  Google Scholar 

  107. Wald A, Ashley R. Serological testing for herpes simplex virus (HSV)-l andHSV-2 infection. Clin Infect Dis 2002; 35: S173–82

    Article  PubMed  Google Scholar 

  108. Langenberg A, Benedetti J, Jenkins J, et al. Development of clinically recognizablegenital lesions among women previously identified as having ‘asymptomatic’HSV-2 infection. Ann Intern Med 1989; 110: 882–7

    PubMed  CAS  Google Scholar 

  109. Wald A, Zeh J, Selke S, et al. Reactivation of genital herpes simplex virus type 2infection in asymptomatic seropositive persons. N Engl J Med 2000; 342:844–50

    Article  PubMed  CAS  Google Scholar 

  110. Morrow RA, Friedrich D, Meier A, et al. Use of “biokit HSV-2 Rapid Assay” toimprove the positive predictive value of Focus HerpeSelect HSV-2 ELISA.BMC Infect Dis 2005; 5: 84

    Article  PubMed  CAS  Google Scholar 

  111. Focus Diagnostics, Inc. HerpeSelect® 2 ELISA IgG (English) package insert[online]. Available from URL: http://www.focustechnologies.com/focus/packageInsert/EL0920G.pdf [Accessed 2006 Jan 18]

  112. Ashley-Morrow R, Krantz E, Wald A. Time course of seroconversion byHerpeSelect ELISA after acquisition of genital herpes simplex virus Type 1(HSV-1) or HSV-2. Sex Transm Dis 2003; 30: 310–4

    Article  PubMed  Google Scholar 

  113. Cherpes T, Ashley R, Meyn L, et al. Longitudinal reliability of Focus glycoproteinG-based type-specific enzyme immunoassays for detection of herpes simplexvirus types 1 and 2 in women. J Clin Microbiol 2003; 41: 671–4

    Article  PubMed  CAS  Google Scholar 

  114. Munday P, Vuddamalay J, Slomka M, et al. Role of type specific herpes simplexvirus serology in the diagnosis and management of genital herpes. Sex TransmInfect 1998; 74: 175–8

    Article  CAS  Google Scholar 

  115. Koutsky L, Ashley R, Holmes K, et al. The frequency of unrecognized type 2herpes simplex virus infection among women: implications for the control ofgenital herpes. Sex Transm Dis 1990; 17: 90–4

    Article  PubMed  CAS  Google Scholar 

  116. Wald A, Corey L. Genital herpes. In: Holmes KK, Sparling KF, Mardh PA, et al.,editors. Sexually transmitted diseases. 3rd ed. New York: McGraw-Hill, 1999:285–312

    Google Scholar 

  117. Wald A, Zeh J, Selke S, et al. Reactivation of genital herpes simplex virus type 2infection in asymptomatic seropositive persons. N Engl J Med 2000; 342:844–50

    Article  PubMed  CAS  Google Scholar 

  118. Mertz G, Coombs R, Ashley R, et al. Transmission of genital herpes in coupleswith one symptomatic and one asymptomatic partner: a prospective study.J Infect Dis 1988; 157: 1169–77

    Article  PubMed  CAS  Google Scholar 

  119. Wald A, Langenberg AG, Link K, et al. Effect of condoms on reducing thetransmission of herpes simplex virus type 2 from men to women. JAMA 2001;285: 3100–6

    Article  PubMed  CAS  Google Scholar 

  120. Wald A, Langenberg AGM, Krantz E, et al. The relationship between condom useand herpes simplex acquisition. Ann Intern Med 2005; 143: 707–13

    PubMed  Google Scholar 

  121. Corey L, Wald A, Patel R, et al. Once-daily valacyclovir to reduce the risk oftransmission of genital herpes. N Engl J Med 2004; 350: 11–20

    Article  PubMed  CAS  Google Scholar 

  122. Brown ZA, Selke S, Zeh J, et al. The acquisition of herpes simplex virus duringpregnancy. N Engl J Med 1997; 337: 509–15

    Article  PubMed  CAS  Google Scholar 

  123. Arvin AM, Whitley RJ. Herpes simplex virus infections. In: [eiRemington JS, Klein JO, editors. Infectious diseases of the fetus and newborn. 5th ed. Philadelphia(PA): WB Saunders Co., 2001: 425–46

    Google Scholar 

  124. Kulhanjian J, Soroush V, Au D, et al. Identification of women at unsuspected riskof primary infection with herpes simplex virus type 2 during pregnancy. N EnglJ Med 1992; 326: 916–20

    Article  CAS  Google Scholar 

  125. Whitley R, Nahmias A, Visintine A, et al. Natural history of herpes simplex virusinfection of mother and newborn. Pediatrics 1980; 66: 489–94

    PubMed  CAS  Google Scholar 

  126. Brown Z. HSV-2 specific serology should be offered routinely to antenatalpatients. Rev Med Virol 2000; 10: 141–4

    Article  PubMed  CAS  Google Scholar 

  127. Kinghorn G. Should all pregnant women be offered type-specific serologicalscreening for HSV infection? The argument for. Herpes 2002; 9(2): 46–7

    PubMed  Google Scholar 

  128. Brocklehurst P, Kinghorn G, Carney O, et al. A randomised placebo-controlledtrial of suppressive aciclovir in late pregnancy in women with recurrent genitalherpes infection. Br J Obstet Gynaecol 1998; 105: 275–80

    Article  PubMed  CAS  Google Scholar 

  129. Scott LL, Hollier LM, Mclntire D, et al. Acyclovir suppression to prevent clinicalrecurrences at delivery after first episode genital herpes in pregnancy: an open-labeltrial. Infect Dis Obstet Gynecol 2001; 9(2): 75–80

    Article  PubMed  CAS  Google Scholar 

  130. Scott LL, Hollier LM, Mclntire D, et al. Acyclovir suppression to prevent recurrentgenital herpes at delivery. Infect Dis Obstet Gynecol 2002; 10(2): 71–7

    Article  PubMed  CAS  Google Scholar 

  131. Scott LL, Sanchez PJ, Jackson GL, et al. Acyclovir suppression to prevent cesareandelivery after first-episode genital herpes. Obstet Gynecol 1996 Jan; 87(1):69–73

    Article  PubMed  CAS  Google Scholar 

  132. Sheffield JS, Hollier LM, Hill JB, et al. Acyclovir prophylaxis to prevent herpessimplex virus recurrence at delivery: a systematic review. Obstet Gynecol 2003Dec; 102(6): 1396–403

    Article  PubMed  CAS  Google Scholar 

  133. Braig S, Luton D, Sibony O, et al. Acyclovir prophylaxis in late pregnancyprevents recurrent genital herpes and viral shedding. Eur J Obstet GynecolReprod Biol 2001 May; 96(1): 55–8

    Article  CAS  Google Scholar 

  134. Stray-Pederson B. Acyclovir in late pregnancy to prevent neonatal herpes simplex[letter]. Lancet 1990 Sep 22; 336(8717): 756

    Article  Google Scholar 

  135. Watts D, Brown Z, Money D, et al. A double-blind, randomized, placebo-controlledtrial of acyclovir in late pregnancy for the reduction of herpes simplexvirus shedding and cesarean delivery. Am J Obstet Gynecol 2003 Mar; 188(3):836–43

    Article  PubMed  CAS  Google Scholar 

  136. Hook EW, Cannon RO, Nahmias AJ, et al. Herpes simplex virus infection as a riskfactor for human immunodeficiency virus infection in heterosexuals. J InfectDis 1992 Feb; 165(2): 251–5

    Article  Google Scholar 

  137. Weiss H. Epidemiology of herpes simplex virus type 2 infection in the developingworld. Herpes 2004; 11Suppl. 1: 24A–35A

    PubMed  Google Scholar 

  138. Gwanzura L, McFarland W, Alexander D, et al. Association between humanimmunodeficiency virus and herpes simplex virus type 2 seropositivity amongmale factory workers in Zimbabwe. J Infect Dis 1998; 177: 481–4

    Article  PubMed  CAS  Google Scholar 

  139. Enzensberger R, Braun W, July C, et al. Prevalence of antibodies to humanherpesviruses and hepatitis B virus in patients at different stages of humanimmunodeficiency virus (HIV) infection. Infection 1991; 19: 140–5

    Article  PubMed  CAS  Google Scholar 

  140. Meyer JL, Crosby RA, Whittington WL, et al. The psychosocial impact ofserological herpes simplex type 2 testing in an urban HIV clinic. Sex TransmInfect 2005; 81: 309–15

    Article  CAS  Google Scholar 

  141. Mostad SB, Kreiss JK, Ryncarz AJ, et al. Cervical shedding of herpes simplexvirus in human immunodeficiency virus-infected women: effects of hormonalcontraception, pregnancy, and vitamin A deficiency. J Infect Dis 2000; 181:58–63

    Article  PubMed  CAS  Google Scholar 

  142. Mbizvo M, Mashu A, Chipato T, et al. Trends in HIV-1 and HIV-2 prevalence andrisk factors in pregnant women in Harare, Zimbabwe. Cent Afr J Med 1996; 42:14–21

    PubMed  CAS  Google Scholar 

  143. Wald A, Link K. Risk of human immunodeficiency virus in herpes simplex virustype 2-seropositive persons: a meta-analysis. J Infect Dis 2002; 185: 45–52

    Article  PubMed  Google Scholar 

  144. Corey L, Wald A, Celum CL, et al. The effects of herpes simplex virus-2 on HIV-1acquisition and transmission: a review of two overlapping epidemics. J AcquirImmune Defic Syndr 2004; 35: 435–45

    Article  Google Scholar 

  145. Gray RH, Wawer MJ, Brookmeyer R, et al. Probability of HIV-1 transmission percoital act in monogamous, heterosexual, HIV-1-discordant couples in Rakai,Uganda. Lancet 2001; 357: 1149–53

    Article  PubMed  CAS  Google Scholar 

  146. Schacker T. The role of HSV in the transmission and progression of HIV. Herpes2001 Jul; 8(2): 46–9

    PubMed  CAS  Google Scholar 

  147. Augenbraun M, Feldman J, Chirgwin K, et al. Increased genital shedding of herpessimplex virus type 2 in HIV-seropositive women. Ann Intern Med 1995; 123:845–7

    PubMed  CAS  Google Scholar 

  148. Schacker T, Zeh J, Hu HL, et al. Frequency of symptomatic and asymptomaticherpes simplex virus type 2 reactivations among human immunodeficiencyvirus-infected men. J Infect Dis 1998; 178: 1616–22

    Article  PubMed  CAS  Google Scholar 

  149. Ioannidis J, Collier AC, Cooper DA, et al. Clinical efficacy of high-dose acyclovirin patients with human immunodeficiency virus infection: a meta-analysis ofrandomized individual patient data. J Infect Dis 1998; 178: 349–59

    Article  PubMed  CAS  Google Scholar 

  150. Schacker T, Zeh J, Hu H, et al. Changes in plasma human immunodeficiency virustype 1 RNA associated with herpes simplex virus reactivation and suppression.J Infect Dis 2002; 186: 1718–25

    Article  PubMed  Google Scholar 

  151. Levin MJ, Bacon TH, Leary JJ. Resistance of herpes simplex virus infections tonucleoside analogues in HIV-infected patients. Clin Infect Dis 2004 Nov 1; 39Suppl. 5: S248–57

    Article  PubMed  CAS  Google Scholar 

  152. Wright PW, Hoesley CJ, Squires KE, et al. A prospective study of genital herpessimplex virus type 2 infection in human immunodeficiency virus type 1(HIV-1)-seropositive women: correlations with CD4 cell count and plasmaHIV-1 RNA level. Clin Infect Dis 2003 Jan 15; 36(2): 207–11

    Article  PubMed  Google Scholar 

  153. Danve-Szatanek C, Aymard M, Thouvenot D, et al. Surveillance network forherpes simplex virus resistance to antiviral drugs: 3-year follow-up. J ClinMicrobiol 2004; 42(1): 242–9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This article was supported in part by grants from the National Institutes of Health (grant T32 AI-07140 to Dr Strick and grant AI-30731 to Dr Wald). The authors would like to thank Meei-Li Huang for her contribution to this article.

The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lara B. Strick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strick, L.B., Wald, A. Diagnostics for Herpes Simplex Virus. Mol Diag Ther 10, 17–28 (2006). https://doi.org/10.1007/BF03256439

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03256439

Keywords

Navigation