Skip to main content
Log in

Biomarkers for Alzheimer Disease in Cerebrospinal Fluid, Urine, and Blood

  • Nervous System Disorders
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Alzheimer disease is the most common cause of dementia, yet its clinical diagnosis remains uncertain until an eventual postmortem histopathology examination. Currently, therapy for patients with Alzheimer disease only treats the symptoms; however, it is anticipated that new disease-modifying drugs will soon become available.

Diagnostic tools for detecting Alzheimer disease at an incipient stage that can reliably differentiate the disease from other forms of dementia are of key importance for optimal treatment. Biomarkers have the potential to aid in a correct diagnosis, and great progress has been made in the discovery and development of potentially useful biomarkers in recent years. This includes single protein biomarkers in the cerebrospinal fluid, as well as multi-component biomarkers, and biomarkers based on gene expression. Novel biomarkers that use blood and urine, the more easily available clinical samples, are also being discovered and developed. The plethora of potential biomarkers currently being investigated may soon provide biomarkers that fulfill different functions, not only for diagnostic purposes but also for drug development and to follow disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McKhann G, Drachman D, Folstein M, et al. Clinical diagnosis of Alzheimer’sdisease: report of the NINCDS-ADRDA Work Group under the auspices ofDepartment of Health and Human Services Task Force on Alzheimer’s Disease.Neurology 1984; 34(7): 939–44

    Article  PubMed  CAS  Google Scholar 

  2. Hebert LE, Scherr PA, Bienias JL, et al. Alzheimer disease in the US population:prevalence estimates using the 2000 census. Arch Neurol 2003; 60(8): 1119–22

    Article  PubMed  Google Scholar 

  3. Cummings JL. Alzheimer’s disease. N Engl J Med 2004; 351(1): 56–67

    Article  PubMed  CAS  Google Scholar 

  4. Fratiglioni L, De Ronchi D, Aguero-Torres H. Worldwide prevalence and incidenceof dementia. Drugs Aging 1999; 15(5): 365–75

    Article  PubMed  CAS  Google Scholar 

  5. Cummings JL, Doody R, Clark C. Disease-modifying therapies for Alzheimerdisease: challenges to early intervention. Neurology 2007; 69(16): 1622–34

    Article  PubMed  Google Scholar 

  6. Padovani A, Borroni B, Di Luca M. Advances on biological markers in earlydiagnosis of Alzheimer disease. Adv Clin Chem 2005; 39: 107–29

    Article  PubMed  Google Scholar 

  7. Consensus report of the Working Group on “Molecular and Biochemical Markersof Alzheimer’s Disease”. The Ronald and Nancy Reagan Research Institute ofthe Alzheimer’s Association and the National Institute on Aging WorkingGroup. Neurobiol Aging 1998; 19(2): 109–16

    Article  Google Scholar 

  8. Ghiso J, Frangione B. Amyloidosis and Alzheimer’s disease. Adv Drug Deliv Rev2002; 54(12): 1539–51

    Article  PubMed  CAS  Google Scholar 

  9. Braak H, Braak E. Demonstration of amyloid deposits and neurofibrillary changesin whole brain sections. Brain Pathol 1991; 1(3): 213–6

    Article  PubMed  CAS  Google Scholar 

  10. Jarrett JT, Berger EP, Lansbury Jr PT. The carboxy terminus of the beta amyloidprotein is critical for the seeding of amyloid formation: implications for thepathogenesis of Alzheimer’s disease. Biochemistry 1993; 32(18): 4693–7

    Article  PubMed  CAS  Google Scholar 

  11. Fukumoto H, Asami-Odaka A, Suzuki N, et al. Amyloid beta protein deposition innormal aging has the same characteristics as that in Alzheimer’s disease:predominance of A beta 42(43) and association of A beta 40 with cored plaques.Am J Pathol 1996; 148(1): 259–65

    PubMed  CAS  Google Scholar 

  12. Gravina SA, Ho L, Eckman CB, et al. Amyloid beta protein (A beta) inAlzheimer’s disease brain: biochemical and immunocytochemical analysis withantibodies specific for forms ending at A beta 40 or A beta 42(43). J Biol Chem1995; 270(13): 7013–6

    Article  PubMed  CAS  Google Scholar 

  13. Iqbal K, Grundke-Iqbal I. Elevated levels of tau and ubiquitin in brain andcerebrospinal fluid in Alzheimer’s disease. Int Psychogeriatr 1997; 9Suppl. 1:289–96, discussion 317-21

    Article  PubMed  Google Scholar 

  14. Grundke-Iqbal I, Rolkova G, Konstekova E, et al. Biological markers inAlzheimer’s disease. Bratisl Lek Listy 2006; 107(9–10): 359–65

    PubMed  CAS  Google Scholar 

  15. Thal LJ, Kantarci K, Reiman EM, et al. The role of biomarkers in clinical trials forAlzheimer disease. Alzheimer Dis Assoc Disord 2006; 20(1): 6–15

    Article  PubMed  Google Scholar 

  16. Hampel H, Mitchell A, Blennow K, et al. Core biological marker candidates ofAlzheimer’s disease: perspectives for diagnosis, prediction of outcome andreflection of biological activity. J Neural Transm 2004; 111(3): 247–72

    Article  PubMed  CAS  Google Scholar 

  17. Andreasen N, Sjogren M, Blennow K. CSF markers for Alzheimer’s disease: totaltau, phospho-tau and Abeta42. World J Biol Psychiatry 2003; 4(4): 147–55

    Article  PubMed  Google Scholar 

  18. Bailey P. Biological markers in Alzheimer’s disease. Can J Neurol Sci 2007; 34Suppl. 1:S72–6

    PubMed  Google Scholar 

  19. Sunderland T, Hampel H, Takeda M, et al. Biomarkers in the diagnosis ofAlzheimer’s disease: are we ready? J Geriatr Psychiatry Neurol 2006; 19(3):172–9

    Article  PubMed  Google Scholar 

  20. Shaw LM, Korecka M, Clark CM, et al. Biomarkers of neurodegeneration fordiagnosis and monitoring therapeutics. Nat Rev Drug Discov 2007; 6(4):295–303

    Article  PubMed  CAS  Google Scholar 

  21. Vandermeeren M, Mercken M, Vanmechelen E, et al. Detection of tau proteins innormal and Alzheimer’s disease cerebrospinal fluid with a sensitive sandwichenzyme-linked immunosorbent assay. J Neurochem 1993; 61(5): 1828–34

    Article  PubMed  CAS  Google Scholar 

  22. Sjogren M, Davidsson P, Tullberg M, et al. Both total and phosphorylated tau areincreased in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2001; 70(5):624–30

    Article  PubMed  CAS  Google Scholar 

  23. Andreasen N, Minthon L, Clarberg A, et al. Sensitivity, specificity, and stability ofCSF-tau in AD in a community-based patient sample. Neurology 1999; 53(7):1488–94

    Article  PubMed  CAS  Google Scholar 

  24. Arai H, Terajima M, Miura M, et al. Tau in cerebrospinal fluid: a potentialdiagnostic marker in Alzheimer’s disease. Ann Neurol 1995; 38(4): 649–52

    Article  PubMed  CAS  Google Scholar 

  25. Blennow K, Wallin A, Agren H, et al. Tau protein in cerebrospinal fluid: abiochemical marker for axonal degeneration in Alzheimer disease? Mol ChemNeuropathol 1995; 26(3): 231–45

    Article  CAS  Google Scholar 

  26. Buerger K, Zinkowski R, Teipel SJ, et al. Differential diagnosis of Alzheimerdisease with cerebrospinal fluid levels of tau protein phosphorylated at threonine231. Arch Neurol 2002; 59(8): 1267–72

    Article  PubMed  Google Scholar 

  27. Hulstaert F, Blennow K, Ivanoiu A, et al. Improved discrimination of AD patientsusing beta-amyloid(1–42) and tau levels in CSF. Neurology 1999; 52(8):1555–62

    Article  PubMed  CAS  Google Scholar 

  28. Kanai M, Matsubara E, Isoe K, et al. Longitudinal study of cerebrospinal fluidlevels of tau, A beta1–40, and A beta1–42(43) in Alzheimer’s disease: a study inJapan. Ann Neurol 1998; 44(1): 17–26

    Article  PubMed  CAS  Google Scholar 

  29. Kapaki E, Paraskevas GP, Zalonis I, et al. CSF tau protein and beta-amyloid (1–42)in Alzheimer’s disease diagnosis: discrimination from normal ageing and otherdementias in the Greek population. Eur J Neurol 2003; 10(2): 119–28

    Article  PubMed  CAS  Google Scholar 

  30. Kurz A, Riemenschneider M, Buch K, et al. Tau protein in cerebrospinal fluid issignificantly increased at the earliest clinical stage of Alzheimer disease.Alzheimer Dis Assoc Disord 1998; 12(4): 372–7

    Article  PubMed  CAS  Google Scholar 

  31. Maruyama M, Arai H, Sugita M, et al. Cerebrospinal fluid amyloid beta(1–42)levels in the mild cognitive impairment stage of Alzheimer’s disease. ExpNeurol 2001; 172(2): 433–6

    CAS  Google Scholar 

  32. Nishimura T, Takeda M, Nakamura Y, et al. Basic and clinical studies on themeasurement of tau protein in cerebrospinal fluid as a biological marker forAlzheimer’s disease and related disorders: multicenter study in Japan. MethodsFind Exp Clin Pharmacol 1998; 20(3): 227–35

    CAS  Google Scholar 

  33. Riemenschneider M, Wagenpfeil S, Diehl J, et al. Tau and Abeta42 protein in CSFof patients with frontotemporal degeneration. Neurology 2002; 58(11): 1622–8

    Article  PubMed  CAS  Google Scholar 

  34. Shoji M, Matsubara E, Murakami T, et al. Cerebrospinal fluid tau in dementiadisorders: a large scale multicenter study by a Japanese study group. NeurobiolAging 2002; 23(3): 363–70

    Google Scholar 

  35. Sjogren M, Davidsson P, Gottfries J, et al. The cerebrospinal fluid levels of tau,growth-associated protein-43 and soluble amyloid precursor protein correlate inAlzheimer’s disease, reflecting a common pathophysiological process. DementGeriatr Cogn Disord 2001; 12(4): 257–64

    Article  CAS  Google Scholar 

  36. Sjogren M, Minthon L, Davidsson P, et al. CSF levels of tau, beta-amyloid(1–42)and GAP-43 in frontotemporal dementia, other types of dementia and normalaging. J Neural Transm 2000; 107(5): 563–79

    Article  PubMed  CAS  Google Scholar 

  37. Wallin A, Sjogren M, Blennow K, et al. Decreased cerebrospinal fluidacetylcholinesterase in patients with subcortical ischemic vascular dementia.Dement Geriatr Cogn Disord 2003; 16(4): 200–7

    Article  PubMed  CAS  Google Scholar 

  38. Andreasen N, Vanmechelen E, Van de Voorde A, et al. Cerebrospinal fluid tauprotein as a biochemical marker for Alzheimer’s disease: a community basedfollow up study. J Neurol Neurosurg Psychiatry 1998; 64(3): 298–305

    Article  PubMed  CAS  Google Scholar 

  39. Mecocci P, Cherubini A, Bregnocchi M, et al. Tau protein in cerebrospinal fluid: anew diagnostic and prognostic marker in Alzheimer disease? Alzheimer DisAssoc Disord 1998; 12(3): 211–4

    Article  CAS  Google Scholar 

  40. Tapiola T, Pirttila T, Mehta PD, et al. Relationship between apoE genotype andCSF beta-amyloid (1–42) and tau in patients with probable and definiteAlzheimer’s disease. Neurobiol Aging 2000; 21(5): 735–40

    Article  PubMed  CAS  Google Scholar 

  41. Blennow K, Hampel H. CSF markers for incipient Alzheimer’s disease. LancetNeurol 2003; 2(10): 605–13

    CAS  Google Scholar 

  42. Itoh N, Arai H, Urakami K, et al. Large-scale, multicenter study of cerebrospinalfluid tau protein phosphorylated at serine 199 for the antemortem diagnosis ofAlzheimer’s disease. Ann Neurol 2001; 50(2): 150–6

    Article  PubMed  CAS  Google Scholar 

  43. Parnetti L, Lanari A, Amici S, et al. CSF phosphorylated tau is a possible markerfor discriminating Alzheimer’s disease from dementia with Lewy bodies:Phospho-Tau International Study Group. Neurol Sci 2001; 22(1): 77–8

    Article  PubMed  CAS  Google Scholar 

  44. Kohnken R, Buerger K, Zinkowski R, et al. Detection of tau phosphorylated atthreonine 231 in cerebrospinal fluid of Alzheimer’s disease patients. NeurosciLett 2000; 287(3): 187–90

    Article  CAS  Google Scholar 

  45. Vanmechelen E, Vanderstichele H, Davidsson P, et al. Quantification of tauphosphorylated at threonine 181 in human cerebrospinal fluid: a sandwichELISA with a synthetic phosphopeptide for standardization. Neurosci Lett2000; 285(1): 49–52

    Article  PubMed  CAS  Google Scholar 

  46. Hu YY, He SS, Wang X, et al. Levels of nonphosphorylated and phosphorylatedtau in cerebrospinal fluid of Alzheimer’s disease patients: an ultrasensitivebienzyme-substrate-recycle enzyme-linked immunosorbent assay. Am J Pathol2002; 160(4): 1269–78

    Article  PubMed  CAS  Google Scholar 

  47. Buerger K, Teipel SJ, Zinkowski R, et al. CSF tau protein phosphorylated atthreonine 231 correlates with cognitive decline in MCI subjects. Neurology2002; 59(4): 627–9

    Article  PubMed  CAS  Google Scholar 

  48. Hampel H, Buerger K, Zinkowski R, et al. Measurement of phosphorylated tauepitopes in the differential diagnosis of Alzheimer disease: a comparativecerebrospinal fluid study. Arch Gen Psychiatry 2004; 61(1): 95–102

    Article  PubMed  CAS  Google Scholar 

  49. Hampel H, Buerger K, Kohnken R, et al. Tracking of Alzheimer’s disease progressionwith cerebrospinal fluid tau protein phosphorylated at threonine 231. AnnNeurol 2001; 49(4): 545–6

    CAS  Google Scholar 

  50. de Leon MJ, Mosconi L, Blennow K, et al. Imaging and CSF studies in thepreclinical diagnosis of Alzheimer’s disease. Ann N Y Acad Sci 2007; 1097:114–45

    Article  PubMed  CAS  Google Scholar 

  51. Andreasen N, Blennow K. CSF biomarkers for mild cognitive impairment andearly Alzheimer’s disease. Clin Neurol Neurosurg 2005; 107(3): 165–73

    Article  PubMed  Google Scholar 

  52. Andreasen N, Minthon L, Davidsson P, et al. Evaluation of CSF-tau and CSF-Abeta42as diagnostic markers for Alzheimer disease in clinical practice. ArchNeurol 2001; 58(3): 373–9

    CAS  Google Scholar 

  53. Palmert MR, Usiak M, Mayeux R, et al. Soluble derivatives of the beta amyloidprotein precursor in cerebrospinal fluid: alterations in normal aging and inAlzheimer’s disease. Neurology 1990; 40(7): 1028–34

    Article  PubMed  CAS  Google Scholar 

  54. Sjogren M, Andreasen N, Blennow K. Advances in the detection of Alzheimer’sdisease-use of cerebrospinal fluid biomarkers. Clin Chim Acta 2003; 332(1–2):1–10

    Article  PubMed  CAS  Google Scholar 

  55. Van Nostrand WE, Wagner SL, Shankle WR, et al. Decreased levels of solubleamyloid beta-protein precursor in cerebrospinal fluid of live Alzheimer diseasepatients. Proc Natl Acad Sci U S A 1992; 89(7): 2551–5

    Article  PubMed  Google Scholar 

  56. Andreasen N, Hesse C, Davidsson P, et al. Cerebrospinal fluid beta-amyloid(l-42)in Alzheimer disease: differences between early- and late-onset Alzheimerdisease and stability during the course of disease. Arch Neurol 1999; 56(6):673–80

    Article  PubMed  CAS  Google Scholar 

  57. Csernansky JG, Miller JP, McKeel D, et al. Relationships among cerebrospinalfluid biomarkers in dementia of the Alzheimer type. Alzheimer Dis AssocDisord 2002; 16(3): 144–9

    Article  CAS  Google Scholar 

  58. Fukuyama R, Mizuno T, Mori S, et al. Age-dependent change in the levels ofAbeta40 and Abeta42 in cerebrospinal fluid from control subjects, and adecrease in the ratio of Abeta42 to Abeta40 level in cerebrospinal fluid fromAlzheimer’s disease patients. Eur Neurol 2000; 43(3): 155–60

    Article  PubMed  CAS  Google Scholar 

  59. Galasko D. Cerebrospinal fluid levels of A beta 42 and tau: potential markers ofAlzheimer’s disease. J Neural Transm Suppl 1998; 53: 209–21

    PubMed  CAS  Google Scholar 

  60. Jensen M, Schroder J, Blomberg M, et al. Cerebrospinal fluid A beta42 is increasedearly in sporadic Alzheimer’s disease and declines with disease progression.Ann Neurol 1999; 45(4): 504–11

    Article  PubMed  CAS  Google Scholar 

  61. Kanemaru K, Kameda N, Yamanouchi H. Decreased CSF amyloid beta42 andnormal tau levels in dementia with Lewy bodies. Neurology 2000; 54(9):1875–6

    Article  PubMed  CAS  Google Scholar 

  62. Mehta PD, Pirttila T, Mehta SP, et al. Plasma and cerebrospinal fluid levels ofamyloid beta proteins 1–40 and 1–42 in Alzheimer disease. Arch Neurol 2000;57(1): 100–5

    Article  PubMed  CAS  Google Scholar 

  63. Motter R, Vigo-Pelfrey C, Kholodenko D, et al. Reduction of beta-amyloidpeptide42 in the cerebrospinal fluid of patients with Alzheimer’s disease. AnnNeurol 1995; 38(4): 643–8

    CAS  Google Scholar 

  64. Otto M, Esselmann H, Schulz-Shaeffer W, et al. Decreased beta-amyloid1–42 incerebrospinal fluid of patients with Creutzfeldt-Jakob disease. Neurology 2000;54(5): 1099–102

    Article  PubMed  CAS  Google Scholar 

  65. Riemenschneider M, Schmolke M, Lautenschlager N, et al. Cerebrospinal beta-amyloid((1–42)) in early Alzheimer’s disease: association with apolipoproteinE genotype and cognitive decline. Neurosci Lett 2000; 284(1–2): 85–8

    Article  PubMed  CAS  Google Scholar 

  66. Sjogren M, Davidsson P, Wallin A, et al. Decreased CSF-beta-amyloid 42 inAlzheimer’s disease and amyotrophic lateral sclerosis may reflect mismetabolismof beta-amyloid induced by disparate mechanisms. Dement Geriatr CognDisord 2002; 13(2): 112–8

    Article  Google Scholar 

  67. Skoog I, Davidsson P, Aevarsson O, et al. Cerebrospinal fluid beta-amyloid 42 isreduced before the onset of sporadic dementia: a population-based study in85-year-olds. Dement Geriatr Cogn Disord 2003; 15(3): 169–76

    Article  PubMed  CAS  Google Scholar 

  68. Sunderland T, Linker G, Mirza N, et al. Decreased beta-amyloid1–42 and increasedtau levels in cerebrospinal fluid of patients with Alzheimer disease. JAMA2003; 289(16): 2094–103

    Article  PubMed  Google Scholar 

  69. Tamaoka A, Sawamura N, Fukushima T, et al. Amyloid beta protein 42(43) incerebrospinal fluid of patients with Alzheimer’s disease. J Neurol Sci 1997; 148(1): 41–5

    Article  PubMed  CAS  Google Scholar 

  70. Blennow K. Cerebrospinal fluid protein biomarkers for Alzheimer’s disease.NeuroRx 2004; 1(2): 213–25

    Article  PubMed  Google Scholar 

  71. Strozyk D, Blennow K, White LR, et al. CSF Abeta 42 levels correlate withamyloid-neuropathology in a population-based autopsy study. Neurology 2003;60(4): 652–6

    Article  PubMed  CAS  Google Scholar 

  72. Citron M. Strategies for disease modification in Alzheimer’s disease. Nat RevNeurosci 2004; 5(9): 677–85

    Article  CAS  Google Scholar 

  73. DeCarli C. Mild cognitive impairment: prevalence, prognosis, aetiology, andtreatment. Lancet Neurol 2003; 2(1): 15–21

    Article  PubMed  Google Scholar 

  74. Ewers M, Buerger K, Teipel SJ, et al. Multicenter assessment of CSF-phosphorylatedtau for the prediction of conversion of MCI. Neurology 2007; 69(24):2205–12

    Article  PubMed  CAS  Google Scholar 

  75. Hampel H, Teipel SJ, Fuchsberger T, et al. Value of CSF beta-amyloid1–42 and tauas predictors of Alzheimer’s disease in patients with mild cognitive impairment.Mol Psychiatry 2004; 9(7): 705–10

    PubMed  CAS  Google Scholar 

  76. Hansson O, Zetterberg H, Buchhave P, et al. Association between CSF biomarkersand incipient Alzheimer’s disease in patients with mild cognitive impairment: afollow-up study. Lancet Neurol 2006; 5(3): 228–34

    Article  PubMed  CAS  Google Scholar 

  77. Mehta PD, Thal L, Wisniewski HM, et al. Paired helical filament antigen in CSF.Lancet 1985; 2(8445): 35

    Article  PubMed  CAS  Google Scholar 

  78. Perry G, Mulvihill P, Fried VA, et al. Immunochemical properties of ubiquitinconjugates in the paired helical filaments of Alzheimer disease. J Neurochem1989; 52(5): 1523–8

    Article  PubMed  CAS  Google Scholar 

  79. Perry G, Friedman R, Shaw G, et al. Ubiquitin is detected in neurofibrillary tanglesand senile plaque neurites of Alzheimer disease brains. Proc Natl Acad SciU S A 1987; 84(9): 3033–6

    Article  CAS  Google Scholar 

  80. Wang GP, Iqbal K, Bucht G, et al. Alzheimer’s disease: paired helical filamentimmunoreactivity in cerebrospinal fluid. Acta Neuropathol 1991; 82(1): 6–12

    Article  PubMed  CAS  Google Scholar 

  81. Kudo T, Iqbal K, Ravid R, et al. Alzheimer disease: correlation of cerebro-spinalfluid and brain ubiquitin levels. Brain Res 1994; 639(1): 1–7

    Article  PubMed  CAS  Google Scholar 

  82. Blennow K, Davidsson P, Wallin A, et al. Ubiquitin in cerebrospinal fluid inAlzheimer’s disease and vascular dementia. Int Psychogeriatr 1994; 6(1):13–22; discussion 59-60

    Article  PubMed  CAS  Google Scholar 

  83. Iqbal K, Flory M, Khatoon S, et al. Subgroups of Alzheimer’s disease based oncerebrospinal fluid molecular markers. Ann Neurol 2005; 58(5): 748–57

    Article  PubMed  CAS  Google Scholar 

  84. Simonsen AH, McGuire J, Podust VN, et al. Identification of a novel panel ofcerebrospinal fluid biomarkers for Alzheimer’s disease. Neurobiol Aging 2007;29(7): 961–8

    Article  PubMed  CAS  Google Scholar 

  85. Simonsen AH, McGuire J, Hansson O, et al. Novel panel of cerebrospinal fluidbiomarkers for the prediction of progression to Alzheimer dementia in patientswith mild cognitive impairment. Arch Neurol 2007; 64(3): 366–70

    Article  PubMed  Google Scholar 

  86. Butterfield DA, Drake J, Pocernich C, et al. Evidence of oxidative damage inAlzheimer’s disease brain: central role for amyloid beta-peptide. Trends MolMed 2001; 7(12): 548–54

    Article  CAS  Google Scholar 

  87. Orth M, Schapira AH. Mitochondrial involvement in Parkinson’s disease.Neurochem Int 2002; 40(6): 533–41

    Article  PubMed  CAS  Google Scholar 

  88. Montine TJ, Neely MD, Quinn JF, et al. Lipid peroxidation in aging brain andAlzheimer’s disease. Free Radic Biol Med 2002; 33(5): 620–6

    Article  PubMed  CAS  Google Scholar 

  89. Porter NA, Caldwell SE, Mills KA. Mechanisms of free radical oxidation ofunsaturated lipids. Lipids 1995; 30(4): 277–90

    Article  PubMed  CAS  Google Scholar 

  90. Montine KS, Quinn JF, Zhang J, et al. Isoprostanes and related products of lipidperoxidation in neurodegenerative diseases. Chem Phys Lipids 2004; 128(1–2):117–24

    Article  PubMed  CAS  Google Scholar 

  91. Montine TJ, Beal MF, Cudkowicz ME, et al. Increased CSF F2-isoprostaneconcentration in probable AD. Neurology 1999; 52(3): 562–5

    Article  PubMed  CAS  Google Scholar 

  92. Morrow JD, Frei B, Longmire AW, et al. Increase in circulating products of lipidperoxidation (F2-isoprostanes) in smokers: smoking as a cause of oxidativedamage. N Engl J Med 1995; 332(18): 1198–203

    Article  PubMed  CAS  Google Scholar 

  93. Montine TJ, Quinn JF, Milatovic D, et al. Peripheral F2-isoprostanes andF4-neuroprostanes are not increased in Alzheimer’s disease. Ann Neurol 2002;52(2): 175–9

    Article  PubMed  CAS  Google Scholar 

  94. Monte SM, Ghanbari K, Frey WH, et al. Characterization of the AD7C-NTP cDNAexpression in Alzheimer’s disease and measurement of a 41-kD protein incerebrospinal fluid. J Clin Invest 1997; 100(12): 3093–104

    Article  PubMed  CAS  Google Scholar 

  95. Ghanbari K, Ghanbari HA. A sandwich enzyme immunoassay for measuringAD7C-NTP as an Alzheimer’s disease marker: AD7C test. J Clin Lab Anal1998; 12(4): 223–6

    Article  PubMed  CAS  Google Scholar 

  96. Goodman IJ. Practical utility of urinary assay in the diagnosis of Alzheimer’sdisease: AlzheimAlert. Expert Rev Mol Diagn 2008; 8(1): 21–8

    Article  PubMed  CAS  Google Scholar 

  97. Goodman I, Golden G, Flitman S, et al. A multi-center blinded prospective study ofurine neural thread protein measurements in patients with suspectedAlzheimer’s disease. J Am Med Dir Assoc 2007; 8(1): 21–30

    Article  PubMed  Google Scholar 

  98. Irizarry MC. Biomarkers of Alzheimer disease in plasma. NeuroRx 2004; 1(2):226–34

    Article  PubMed  Google Scholar 

  99. Scheuner D, Eckman C, Jensen M, et al. Secreted amyloid beta-protein similar tothat in the senile plaques of Alzheimer’s disease is increased in vivo by thepresenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease.Nat Med 1996; 2(8): 864–70

    Article  PubMed  CAS  Google Scholar 

  100. Kosaka T, Imagawa M, Seki K, et al. The beta APP717 Alzheimer mutationincreases the percentage of plasma amyloid-beta protein ending at Abeta42(43). Neurology 1997; 48(3): 741–5

    Article  PubMed  CAS  Google Scholar 

  101. Schupf N, Patel B, Silverman W, et al. Elevated plasma amyloid beta-peptide 1–42and onset of dementia in adults with Down syndrome. Neurosci Lett 2001; 301(3): 199–203

    Article  PubMed  CAS  Google Scholar 

  102. Tamaoka A, Fukushima T, Sawamura N, et al. Amyloid beta protein in plasmafrom patients with sporadic Alzheimer’s disease. J Neurol Sci 1996; 141(1–2):65–8

    Article  PubMed  CAS  Google Scholar 

  103. Mayeux R, Tang MX, Jacobs DM, et al. Plasma amyloid beta-peptide 1–42 andincipient Alzheimer’s disease. Ann Neurol 1999; 46(3): 412–6

    Article  PubMed  CAS  Google Scholar 

  104. Mayeux R, Honig LS, Tang MX, et al. Plasma A[beta]40 and A[beta]42 andAlzheimer’s disease: relation to age, mortality, and risk. Neurology 2003; 61(9): 1185–90

    Article  PubMed  CAS  Google Scholar 

  105. Vanderstichele H, Van Kerschaver E, Hesse C, et al. Standardization of measurementof beta-amyloid(1–42) in cerebrospinal fluid and plasma. Amyloid 2000; 7(4): 245–58

    Article  PubMed  CAS  Google Scholar 

  106. Fukumoto H, Tennis M, Locascio JJ, et al. Age but not diagnosis is the mainpredictor of plasma amyloid beta-protein levels. Arch Neurol 2003; 60(7):958–64

    Article  PubMed  Google Scholar 

  107. Mehta PD, Pirttila T, Patrick BA, et al. Amyloid beta protein 1–40 and 1–42 levelsin matched cerebrospinal fluid and plasma from patients with Alzheimerdisease. Neurosci Lett 2001; 304(1–2): 102–6

    Article  PubMed  CAS  Google Scholar 

  108. Tokuda T, Tamaoka A, Matsuno S, et al. Plasma levels of amyloid beta proteins didnot differ between subjects taking statins and those not taking statins. AnnNeurol 2001; 49(4): 546–7

    CAS  Google Scholar 

  109. Buxbaum JD, Cullen EI, Friedhoff LT. Pharmacological concentrations of theHMG-CoA reductase inhibitor lovastatin decrease the formation of the Alzheimerbeta-amyloid peptide in vitro and in patients. Front Biosci 2002; 7:a50–9

    Article  PubMed  CAS  Google Scholar 

  110. Baker LD, Sambamurti K, Craft S, et al. 17beta-estradiol reduces plasma Abeta40for HRT-naive postmenopausal women with Alzheimer disease: a preliminarystudy. Am J Geriatr Psychiatry 2003; 11(2): 239–44

    PubMed  Google Scholar 

  111. Ghersi-Egea JF, Gorevic PD, Ghiso J, et al. Fate of cerebrospinal fluid-borneamyloid beta-peptide: rapid clearance into blood and appreciable accumulationby cerebral arteries. J Neurochem 1996; 67(2): 880–3

    Article  PubMed  CAS  Google Scholar 

  112. Maness LM, Banks WA, Podlisny MB, et al. Passage of human amyloid beta-protein 1–40 across the murine blood-brain barrier. Life Sci 1994; 55(21):1643–50

    Article  PubMed  CAS  Google Scholar 

  113. Padovani A, Borroni B, Colciaghi F, et al. Abnormalities in the pattern of plateletamyloid precursor protein forms in patients with mild cognitive impairment andAlzheimer disease. Arch Neurol 2002; 59(1): 71–5

    Article  PubMed  Google Scholar 

  114. Padovani A, Pastorino L, Borroni B, et al. Amyloid precursor protein in platelets: aperipheral marker for the diagnosis of sporadic AD. Neurology 2001; 57(12):2243–8

    Article  PubMed  CAS  Google Scholar 

  115. Rosenberg RN, Baskin F, Fosmire JA, et al. Altered amyloid protein processing inplatelets of patients with Alzheimer disease. Arch Neurol 1997; 54(2): 139–44

    Article  PubMed  CAS  Google Scholar 

  116. Baskin F, Rosenberg RN, Iyer L, et al. Platelet APP isoform ratios correlate withdeclining cognition in AD. Neurology 2000; 54(10): 1907–9

    Article  PubMed  CAS  Google Scholar 

  117. Borroni B, Colciaghi F, Lenzi GL, et al. High cholesterol affects platelet APPprocessing in controls and in AD patients. Neurobiol Aging 2003; 24(5): 631–6

    Article  PubMed  CAS  Google Scholar 

  118. Borroni B, Colciaghi F, Pastorino L, et al. Amyloid precursor protein in platelets ofpatients with Alzheimer disease: effect of acetylcholinesterase inhibitor treatment.Arch Neurol 2001; 58(3): 442–6

    Article  PubMed  CAS  Google Scholar 

  119. Bush AI, Tanzi RE. Alzheimer disease-related abnormalities of amyloid betaprecursor protein isoforms in the platelet: the brain’s delegate in the periphery?Arch Neurol 1998; 55(9): 1179–80

    Article  PubMed  CAS  Google Scholar 

  120. Greco A, Minghetti L, Levi G. Isoprostanes, novel markers of oxidative injury,help understanding the pathogenesis of neurodegenerative diseases. NeurochemRes 2000; 25(9–10): 1357–64

    Article  CAS  Google Scholar 

  121. Pratico D, Clark CM, Lee VM, et al. Increased 8,12-iso-iPF2alpha-VI inAlzheimer’s disease: correlation of a noninvasive index of lipid peroxidationwith disease severity. Ann Neurol 2000; 48(5): 809–12

    Article  PubMed  CAS  Google Scholar 

  122. Pratico D, Clark CM, Liun F, et al. Increase of brain oxidative stress in mildcognitive impairment: a possible predictor of Alzheimer disease. Arch Neurol2002; 59(6): 972–6

    Article  PubMed  Google Scholar 

  123. Weiner HL, Selkoe DJ. Inflammation and therapeutic vaccination in CNS diseases.Nature 2002; 420(6917): 879–84

    Article  PubMed  CAS  Google Scholar 

  124. Teunissen CE, de Vente J, Steinbusch HW, et al. Biochemical markers related toAlzheimer’s dementia in serum and cerebrospinal fluid. Neurobiol Aging 2002;23(4): 485–508

    Article  PubMed  CAS  Google Scholar 

  125. Bonaccorso S, Lin A, Song C, et al. Serotonin-immune interactions in elderlyvolunteers and in patients with Alzheimer’s disease (DAT): lower plasmatryptophan availability to the brain in the elderly and increased serum interleukin-6in DAT. Aging (Milano) 1998; 10(4): 316–23

    CAS  Google Scholar 

  126. Kaiman J, Juhasz A, Laird G, et al. Serum interleukin-6 levels correlate with theseverity of dementia in Down syndrome and in Alzheimer’s disease. ActaNeurol Scand 1997; 96(4): 236–40

    Google Scholar 

  127. Licastro F, Pedrini S, Caputo L, et al. Increased plasma levels of interleukin-1,interleukin-6 and alpha-1-antichymotrypsin in patients with Alzheimer’s disease:peripheral inflammation or signals from the brain? J Neuroimmunol 2000;103(1): 97–102

    Article  PubMed  CAS  Google Scholar 

  128. Maes M, DeVos N, Wauters A, et al. Inflammatory markers in younger vs elderlynormal volunteers and in patients with Alzheimer’s disease. J Psychiatr Res1999; 33(5): 397–405

    Article  PubMed  CAS  Google Scholar 

  129. Singh VK, Guthikonda P. Circulating cytokines in Alzheimer’s disease. J PsychiatrRes 1997; 31(6): 657–60

    Article  CAS  Google Scholar 

  130. Tarkowski E, Blennow K, Wallin A, et al. Intracerebral production of tumornecrosis factor-alpha, a local neuroprotective agent, in Alzheimer disease andvascular dementia. J Clin Immunol 1999; 19(4): 223–30

    Article  PubMed  CAS  Google Scholar 

  131. Angelis P, Scharf S, Mander A, et al. Serum interleukin-6 and interleukin-6 solublereceptor in Alzheimer’s disease. Neurosci Lett 1998; 244(2): 106–8

    Article  PubMed  CAS  Google Scholar 

  132. Blum-Degen D, Muller T, Kuhn W, et al. Interleukin-1 beta and interleukin-6 areelevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’sdisease patients. Neurosci Lett 1995; 202(1–2): 17–20

    Article  PubMed  CAS  Google Scholar 

  133. Chao CC, Ala TA, Hu S, et al. Serum cytokine levels in patients with Alzheimer’sdisease. Clin Diagn Lab Immunol 1994; 1(4): 433–6

    PubMed  CAS  Google Scholar 

  134. van Duijn CM, Hofman A, Nagelkerken L. Serum levels of interleukin-6 are notelevated in patients with Alzheimer’s disease. Neurosci Lett 1990; 108(3):350–4

    Article  PubMed  Google Scholar 

  135. Ershler WB, Sun WH, Binkley N, et al. Interleukin-6 and aging: blood levels andmononuclear cell production increase with advancing age and in vitro productionis modifiable by dietary restriction. Lymphokine Cytokine Res 1993; 12(4): 225–30

    PubMed  CAS  Google Scholar 

  136. Teunissen CE, Lutjohann D, von Bergmann K, et al. Combination of serummarkers related to several mechanisms in Alzheimer’s disease. NeurobiolAging 2003; 24(7): 893–902

    CAS  Google Scholar 

  137. Ray S, Britschgi M, Herbert C, et al. Classification and prediction of clinicalAlzheimer’s diagnosis based on plasma signaling proteins. Nat Med 2007; 13(11): 1359–62

    Article  PubMed  CAS  Google Scholar 

  138. Ueno I, Sakai T, Yamaoka M, et al. Analysis of blood plasma proteins in patientswith Alzheimer’s disease by two-dimensional electrophoresis, sequence homologyand immunodetection. Electrophoresis 2000; 21(9): 1832–45

    Article  PubMed  CAS  Google Scholar 

  139. Hye A, Lynham S, Thambisetty M, et al. Proteome-based plasma biomarkers forAlzheimer’s disease. Brain 2006; 129(Pt 11): 3042–50

    Article  PubMed  CAS  Google Scholar 

  140. Frank R, Hargreaves R. Clinical biomarkers in drug discovery and development.Nat Rev Drug Discov 2003; 2(7): 566–80

    Article  PubMed  CAS  Google Scholar 

  141. Carrette O, Demalte I, Scherl A, et al. A panel of cerebrospinal fluid potentialbiomarkers for the diagnosis of Alzheimer’s disease. Proteomics 2003; 3(8):1486–94

    Article  PubMed  CAS  Google Scholar 

  142. Sullivan PF, Fan C, Perou CM. Evaluating the comparability of gene expression inblood and brain. Am J Med Genet B Neuropsychiatr Genet 2006; 141(3): 261–8

    Google Scholar 

  143. Simonsen AH, McGuire J, Podust VN, et al. A novel panel of cerebrospinal fluidbiomarkers for the differential diagnosis of Alzheimer’s disease versus normalaging and frontotemporal dementia. Dement Geriatr Cogn Disord 2007; 24(6):434–40

    Article  PubMed  CAS  Google Scholar 

  144. Sharp FR, Xu H, Lit L, et al. The future of genomic profiling of neurologicaldiseases using blood. Arch Neurol 2006; 63(11): 1529–36

    Article  PubMed  Google Scholar 

  145. Burczynski ME, Dorner AJ. Transcriptional profling of peripheral blood cells inclinical pharmacogenomic studies. Pharmacogenomics 2006; 7(2): 187–202

    Article  PubMed  CAS  Google Scholar 

  146. Gladkevich A, Kauffman HF, Korf J. Lymphocytes as a neural probe: potential forstudying psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry2004; 28(3): 559–76

    Article  PubMed  Google Scholar 

  147. Shi L, Shi L, Reid LH, et al. The MicroArray Quality Control (MAQC) projectshows inter- and intraplatform reproducibility of gene expression measurements.Nat Biotechnol 2006; 24(9): 1151–61

    Article  PubMed  CAS  Google Scholar 

  148. Canales RD, Luo Y, Willey JC, et al. Evaluation of DNA microarray results withquantitative gene expression platforms. Nat Biotechnol 2006; 24(9): 1115–22

    Article  PubMed  CAS  Google Scholar 

  149. Kaiman J, Kitajka K, Pakaski M, et al. Gene expression profile analysis oflymphocytes from Alzheimer’s patients. Psychiatr Genet 2005; 15(1): 1–6

    Article  Google Scholar 

  150. Maes OC, Xu S, Yu B, et al. Transcriptional profiling of Alzheimer bloodmononuclear cells by microarray. Neurobiol Aging 2007; 28(12): 1795–809

    Article  PubMed  CAS  Google Scholar 

  151. Sharma P, Lindahl T, Engedal K, et al. Detection of Alzheimer disease based ongene expression patterns in peripheral blood cells. Int Psychogeriatr 2005; 17:s294–5

    Google Scholar 

  152. Lönneborg A, Booij B, Hagen N, et al. A gene expression signature in blood toaccurately detect Alzheimer’s disease. In: Hanin I, Windisch M, Poewe W, etal., editors. New trends in Alzheimer and Parkinson related disorders: ADPD2007. Bologna: Medimond S.r.l., 2007: 25–9

    Google Scholar 

  153. Jellinger KA. Diagnostic accuracy of Alzheimer’s disease: a clinicopathologicalstudy. Acta Neuropathol 1996; 91(2): 219–20

    Article  PubMed  CAS  Google Scholar 

  154. Kosunen O, Soininen H, Paljarvi L, et al. Diagnostic accuracy of Alzheimer’sdisease: a neuropathological study. Acta Neuropathol 1996; 91(2): 185–93

    Article  PubMed  CAS  Google Scholar 

  155. Lopez OL, Becker JT, Kaufer DI, et al. Research evaluation and prospectivediagnosis of dementia with Lewy bodies. Arch Neurol 2002; 59(1): 43–6

    Article  PubMed  Google Scholar 

  156. Price JL, Morris JC. Tangles and plaques in nondemented aging and ‘preclinical’Alzheimer’s disease. Ann Neurol 1999; 45(3): 358–68

    Article  PubMed  CAS  Google Scholar 

  157. Knopman DS, Parisi JE, Salviati A, et al. Neuropathology of cognitively normalelderly. J Neuropathol Exp Neurol 2003; 62(11): 1087–95

    PubMed  CAS  Google Scholar 

  158. Martinez M, Fernandez E, Frank A, et al. Increased cerebrospinal fluid cAMPlevels in Alzheimer’s disease. Brain Res 1999; 846(2): 265–7

    Article  PubMed  CAS  Google Scholar 

  159. Sjogren M, Rosengren L, Minthon L, et al. Cytoskeleton proteins in CSF distinguishfrontotemporal dementia from AD. Neurology 2000; 54(10): 1960–4

    Article  PubMed  CAS  Google Scholar 

  160. Zetterberg H, Ruetschi U, Portelius E, et al. Clinical proteomics in neurodegenerativedisorders. Acta Neurol Scand 2008; 118(1): 1–11

    Article  PubMed  CAS  Google Scholar 

  161. Soininen H, Halonen T, Riekkinen PJ. Acetylcholinesterase activities in cerebrospinalfluid of patients with senile dementia of Alzheimer type. Acta NeurolScand 1981; 64(3): 217–24

    CAS  Google Scholar 

  162. Jarvik LF, Matsuyama SS, Kessler JO, et al. Philothermal response of polymorphonuclearleukocytes in dementia of the Alzheimer type. Neurobiol Aging 1982; 3(2): 93–9

    Article  PubMed  CAS  Google Scholar 

  163. Chong JK, Miller BE, Ghanbari HA. Detection of amyloid beta protein precursorimmunoreactivity in normal and Alzheimer’s disease cerebrospinal fluid. LifeSci 1990; 47(13): 1163–71

    Article  CAS  Google Scholar 

  164. Ghanbari H, Ghanbari K, Beheshti I, et al. Biochemical assay for AD7C-NTP inurine as an Alzheimer’s disease marker. J Clin Lab Anal 1998; 12(5): 285–8

    Article  PubMed  CAS  Google Scholar 

  165. Arai H, Ishiguro K, Ohno H, et al. CSF phosphorylated tau protein and mildcognitive impairment: a prospective study. Exp Neurol 2000; 166(1): 201–3

    Article  PubMed  CAS  Google Scholar 

  166. Puchades M, Hansson SF, Nilsson CL, et al. Proteomic studies of potentialcerebrospinal fluid protein markers for Alzheimer’s disease. Brain Res MolBrain Res 2003; 118(1–2): 140–6

    CAS  Google Scholar 

  167. Butterfield DA. Proteomics: a new approach to investigate oxidative stress inAlzheimer’s disease brain. Brain Res 2004; 1000(1–2): 1–7

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Lönneborg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lönneborg, A. Biomarkers for Alzheimer Disease in Cerebrospinal Fluid, Urine, and Blood. Mol Diag Ther 12, 307–320 (2008). https://doi.org/10.1007/BF03256296

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03256296

Keywords

Navigation