Skip to main content
Log in

Clinical Application of Array-Based Comparative Genomic Hybridization for the Identification of Prognostically Important Genetic Alterations in Chronic Lymphocytic Leukemia

  • Cancer
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Genomic aberrations have increasingly gained attention as prognostic markers in B-cell chronic lymphocytic leukemia (CLL). Fluorescence in situ hybridization (FISH) has improved the detection rate of genomic alterations in CLL from approximately 50% using conventional cytogenetics to greater than 80%. More recently, array comparative genomic hybridization (CGH) has gained popularity as a clinical tool that can be applied to detect genomic gains and losses of prognostic importance in CLL. Array CGH and FISH are particularly useful in CLL because genomic gains and losses are key events with both biologic and prognostic significance, while balanced translocations have limited prognostic value. Although FISH has a higher technical sensitivity, it requires separate, targeted hybridizations for the detection of alterations at genomic loci of interest. Array CGH, on the other hand, has the ability to provide a genome-wide survey of genomic aberrations with a single hybridization reaction. Array CGH is expanding the known genomic regions of importance in CLL and allows these regions to be evaluated in the context of a genome-wide perspective. Ongoing clinical trials are evaluating the use of genomic aberrations as tools for risk-stratifying patients for therapy, thus increasing the need for reliable and high-yield methods to detect these genomic changes. In this review, we consider the use of array CGH as a clinical tool for the identification of genomic alterations with prognostic significance in CLL, and suggest ways to integrate this test into the clinical molecular diagnostic laboratory work flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Morton LM, Wang SS, Devesa SS, et al. Lymphoma incidence patterns by WHO subtype in the United States, 1992–2001. Blood 2006 Jan 1; 107(1): 265–76

    Article  PubMed  CAS  Google Scholar 

  2. Dighiero G, Maloum K, Desablens B, et al. Chlorambucil in indolent chronic lymphocytic leukemia. French Cooperative Group on Chronic Lymphocytic Leukemia. N Engl J Med 1998 May 21; 338(21): 1506–14

    Article  PubMed  CAS  Google Scholar 

  3. Kay NE, O’Brien SM, Pettitt AR, et al. The role of prognostic factors in assessing ‘high-risk’ subgroups of patients with chronic lymphocytic leukemia. Leukemia 2007 Sep; 21(9): 1885–91

    Article  PubMed  CAS  Google Scholar 

  4. Hamblin TJ, Davis Z, Gardiner A, et al. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 1999 Sep 15; 94(6): 1848–54

    PubMed  CAS  Google Scholar 

  5. Damle RN, Wasil T, Fais F, et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 1999 Sep 15; 94(6): 1840–7

    PubMed  CAS  Google Scholar 

  6. Inamdar KV, Bueso-Ramos CE. Pathology of chronic lymphocytic leukemia: an update. Ann Diagn Pathol 2007 Oct; 11(5): 363–89

    Article  PubMed  Google Scholar 

  7. Zenz T, Dohner H, Stilgenbauer S. Genetics and risk-stratified approach to therapy in chronic lymphocytic leukemia. Best Pract Res Clin Haematol 2007 Sep; 20(3): 439–53

    Article  PubMed  CAS  Google Scholar 

  8. Juliusson G, Oscier DG, Fitchett M, et al. Prognostic subgroups in B-cell chronic lymphocytic leukemia defined by specific chromosomal abnormalities. N Engl J Med 1990 Sep 13; 323(11): 720–4

    Article  PubMed  CAS  Google Scholar 

  9. Dohner H, Stilgenbauer S, Benner A, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 2000 Dec 28; 343(26): 1910–6

    Article  PubMed  CAS  Google Scholar 

  10. Glassman AB, Hayes KJ. The value of fluorescence in situ hybridization in the diagnosis and prognosis of chronic lymphocytic leukemia. Cancer Genet Cytogenet 2005; 158: 88–91

    Article  PubMed  CAS  Google Scholar 

  11. Oscier DG, Gardiner AC, Mould SJ, et al. Multivariate analysis of prognostic factors in CLL: clinical stage, IGVH gene mutational status, and loss or mutation of the p53 gene are independent prognostic factors. Blood 2002 Aug 15; 100(4): 1177–84

    PubMed  CAS  Google Scholar 

  12. Krober A, Seiler T, Benner A, et al. V(H) mutation status, CD38 expression level, genomic aberrations, and survival in chronic lymphocytic leukemia. Blood 2002 Aug 15; 100(4): 1410–6

    PubMed  CAS  Google Scholar 

  13. Gaidano G, Ballerini P, Gong JZ, et al. p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 1991 Jun 15; 88(12): 5413–7

    Article  PubMed  CAS  Google Scholar 

  14. Dohner H, Fischer K, Bentz M, et al. p53 gene deletion predicts for poor survival and non-response to therapy with purine analogs in chronic B-cell leukemias. Blood 1995 Mar 15; 85(6): 1580–9

    PubMed  CAS  Google Scholar 

  15. Wattel E, Preudhomme C, Hecquet B, et al. p53 mutations are associated with resistance to chemotherapy and short survival in hematologic malignancies. Blood 1994 Nov 1; 84(9): 3148–57

    PubMed  CAS  Google Scholar 

  16. el Rouby S, Thomas A, Costin D, et al. p53 gene mutation in B-cell chronic lymphocytic leukemia is associated with drug resistance and is independent of MDR1/MDR3 gene expression. Blood 1993 Dec 1; 82(11): 3452–9

    PubMed  Google Scholar 

  17. Austen B, Powell JE, Alvi A, et al. Mutations in the ATM gene lead to impaired overall and treatment-free survival that is independent of IGVH mutation status in patients with B-CLL. Blood 2005 Nov 1; 106(9): 3175–82

    Article  PubMed  CAS  Google Scholar 

  18. Stilgenbauer S, Dohner H. Campath-1H-induced complete remission of chronic lymphocytic leukemia despite p53 gene mutation and resistance to chemotherapy. N Engl J Med 2002 Aug 8; 347(6): 452–3

    Article  PubMed  Google Scholar 

  19. Caballero D, Garcia-Marco JA, Martino R, et al. Allogeneic transplant with reduced intensity conditioning regimens may overcome the poor prognosis of B-cell chronic lymphocytic leukemia with unmutated immunoglobulin variable heavy-chain gene and chromosomal abnormalities (11q- and 17p-). Clin Cancer Res 2005 Nov 1; 11(21): 7757–63

    Article  PubMed  CAS  Google Scholar 

  20. Escudier SM, Pereira-Leahy JM, Drach JW, et al. Fluorescent in situ hybridization and cytogenetic studies of trisomy 12 in chronic lymphocytic leukemia. Blood 1993 May 15; 81(10): 2702–7

    PubMed  CAS  Google Scholar 

  21. Criel A, Verhoef G, Vlietinck R, et al. Further characterization of morphologically defined typical and atypical CLL: a clinical, immunophenotypic, cytogenetic and prognostic study on 390 cases. Br J Haematol 1997 May; 97(2): 383–91

    Article  PubMed  CAS  Google Scholar 

  22. Matutes E, Oscier D, Garcia-Marco J, et al. Trisomy 12 defines a group of CLL with atypical morphology: correlation between cytogenetic, clinical and laboratory features in 544 patients. Br J Haematol 1996 Feb; 92(2): 382–8

    Article  PubMed  CAS  Google Scholar 

  23. Que TH, Marco JG, Ellis J, et al. Trisomy 12 in chronic lymphocytic leukemia detected by fluorescence in situ hybridization: analysis by stage, immunophenotype, and morphology. Blood 1993 Jul 15; 82(2): 571–5

    PubMed  CAS  Google Scholar 

  24. Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2002 Nov 26; 99(24): 15524–9

    Article  PubMed  CAS  Google Scholar 

  25. Shanafelt TD, Jelinek D, Tschumper R, et al. Cytogenetic abnormalities can change during the course of the disease process in chronic lymphocytic leukemia. J Clin Oncol 2006 Jul 1; 24(19): 3218–9; author reply 9-20

    Article  PubMed  Google Scholar 

  26. Shanafelt TD, Witzig TE, Fink SR, et al. Prospective evaluation of clonal evolution during long-term follow-up of patients with untreated early-stage chronic lymphocytic leukemia. J Clin Oncol 2006 Oct 1; 24(28): 4634–41

    Article  PubMed  Google Scholar 

  27. Chevallier P, Penther D, Avet-Loiseau H, et al. CD38 expression and secondary 17p deletion are important prognostic factors in chronic lymphocytic leukaemia. Br J Haematol 2002 Jan; 116(1): 142–50

    Article  PubMed  CAS  Google Scholar 

  28. Stilgenbauer S, Sander S, Bullinger L, et al. Clonal evolution in chronic lymphocytic leukemia: acquisition of high-risk genomic aberrations associated with unmutated VH, resistance to therapy, and short survival. Haematologica 2007 Sep; 92(9): 1242–5

    Article  PubMed  Google Scholar 

  29. Shaffer LG, Ledbetter DH, Lupski JR. Molecular cytogenetics of contiguous gene syndromes: mechanisms and consequences of gene dosage imbalance. In: Scriver CR, Beaudet AL, Sly WS, et al., editors. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill, 2001: 1293

    Google Scholar 

  30. Mayr C, Speicher MR, Kotier DM, et al. Chromosomal translocations are associated with poor prognosis in chronic lymphocytic leukemia. Blood 2006 Jan 15; 107(2): 742–51

    Article  PubMed  CAS  Google Scholar 

  31. Dicker F, Schnittger S, Haferlach T, et al. Immunostimulatory oligonucleotide-induced metaphase cytogenetics detect chromosomal aberrations in 80% of CLL patients: a study of 132 CLL cases with correlation to FISH, IgVH status, and CD38 expression. Blood 2006 Nov 1; 108(9): 3152–60

    Article  PubMed  CAS  Google Scholar 

  32. Bastard C, Raux G, Fruchart C, et al. Comparison of a quantitative PCR method with FISH for the assessment of the four aneuploidies commonly evaluated in CLL patients. Leukemia 2007 Jul; 21(7): 1460–3

    Article  PubMed  CAS  Google Scholar 

  33. Bentz M, Huck K, du Manoir S, et al. Comparative genomic hybridization in chronic B-cell leukemias shows a high incidence of chromosomal gains and losses. Blood 1995 Jun 15; 85(12): 3610–8

    PubMed  CAS  Google Scholar 

  34. Tsukasaki K, Lohr D, Sugahara K, et al. Comparative genomic hybridization analysis of Japanese B-cell chronic lymphocytic leukemia: correlation with clinical course. Leuk Lymphoma 2006 Feb; 47(2): 261–6

    Article  PubMed  CAS  Google Scholar 

  35. Gunn SR, Robetorye RS, Mohammed MS. Comparative genomic hybridization arrays in clinical pathology: progress and challenges. Mol Diagn Ther 2007; 11(2): 73–7

    PubMed  CAS  Google Scholar 

  36. Kennedy GC, Matsuzaki H, Dong S, et al. Large-scale genotyping of complex DNA. Nat Biotechnol 2003 Oct; 21(10): 1233–7

    Article  PubMed  CAS  Google Scholar 

  37. Barrett MT, Scheffer A, Ben-Dor A, et al. Comparative genomic hybridization using oligonucleotide microarrays and total genomic DNA. Proc Natl Acad Sci U S A 2004 Dec 21; 101(51): 17765–70

    Article  PubMed  CAS  Google Scholar 

  38. Brennan C, Zhang Y, Leo C, et al. High-resolution global profiling of genomic alterations with long oligonucleotide microarray. Cancer Res 2004 Jul 15; 64(14): 4744–8

    Article  PubMed  CAS  Google Scholar 

  39. Tyybakinoja A, Vilpo J, Knuutila S. High-resolution oligonucleotide array-CGH pinpoints genes involved in cryptic losses in chronic lymphocytic leukemia. Cytogenet Genome Res 2007; 118(1): 8–12

    Article  PubMed  CAS  Google Scholar 

  40. Van Den Neste E, Robin V, Francart J, et al. Chromosomal translocations independently predict treatment failure, treatment-free survival and overall survival in B-cell chronic lymphocytic leukemia patients treated with cladribine. Leukemia 2007 Aug; 21(8): 1715–22

    Article  Google Scholar 

  41. Rauen KA, Albertson DG, Pinkel D, et al. Additional patient with del(12)(q21.2q22): further evidence for a candidate region for cardio-faciocutaneous syndrome? Am J Med Genet 2002 Jun 1; 110(1): 51–6

    Article  PubMed  Google Scholar 

  42. Gunn SR, Mohammed M, Reveles XT, et al. Molecular characterization of a patient with central nervous system dysmyelination and cryptic unbalanced translocation between chromosomes 4q and 18q. Am J Med Genet A 2003 Jul 1; 120(1): 127–35

    Article  Google Scholar 

  43. Schwaenen C, Nessling M, Wessendorf S, et al. Automated array-based genomic profiling in chronic lymphocytic leukemia: development of a clinical tool and discovery of recurrent genomic alterations. Proc Natl Acad Sci U S A 2004 Jan 27; 101(4): 1039–44

    Article  PubMed  CAS  Google Scholar 

  44. Patel A, Kang S-H, Lennon PA, et al. Validation of a targeted DNA microarray for clinical evaluation of recurrent abnormalities in chronic lymphocytic leukemia. Am J Hematol 2008 Jul; 83(7): 540–6

    Article  PubMed  CAS  Google Scholar 

  45. Sargent R, Jones D, Abruzzo LV, et al. Array based comparative genomic hybridization as a clinical assay for genomic profiling of chronic lymphocytic leukemia. J Mol Diag. In press

  46. Gunn SR, Mohammed MS, Gorre ME, et al. Whole-genome scanning by array CGH as a clinical tool. J Mol Diagn 2008 Sep; 10(5): 442–51

    Article  PubMed  CAS  Google Scholar 

  47. Manning M, Hudgins L. Use of array-based technology in the practice of medical genetics. Genet Med 2007 Sep; 9(9): 650–3

    Article  PubMed  CAS  Google Scholar 

  48. Shaffer LG, Tommerup N, editors, for the International Standing Committee on Human Cytogenetic Nomenclature. An international system for human cytogenetic nomenclature. Basel: S Karger, 2005

    Google Scholar 

  49. Iafrate AJ, Feuk L, Rivera MN, et al. Detection of large-scale variation in the human genome. Nat Genet 2004 Sep; 36(9): 949–51

    Article  PubMed  CAS  Google Scholar 

  50. Sebat J, Lakshmi B, Troge J, et al. Large-scale copy number polymorphism in the human genome. Science 2004 Jul 23; 305(5683): 525–8

    Article  PubMed  CAS  Google Scholar 

  51. Bejjani BA, Saleki R, Ballif BC, et al. Use of targeted array-based CGH for the clinical diagnosis of chromosomal imbalance: is less more? Am J Med Genet A 2005 Apr 30; 134(3): 259–67

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan S. Robetorye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higgins, R.A., Gunn, S.R. & Robetorye, R.S. Clinical Application of Array-Based Comparative Genomic Hybridization for the Identification of Prognostically Important Genetic Alterations in Chronic Lymphocytic Leukemia. Mol Diag Ther 12, 271–280 (2008). https://doi.org/10.1007/BF03256292

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03256292

Keywords

Navigation