Skip to main content
Log in

Kinetic determination of trace amounts of thiosulfate based on its inhibitory effect

  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The sulfur containing ligand viz., thiosulfate is found to inhibit the Ag(I) catalyzed substitution of cyanide in hexacyanoferrate(II) by phenylhydrazine. The inhibitory effect of thiosulfate is attributed due to its tendency to form complexes with Ag(I), leading to the production of inhibitor-catalyst complexes. The reactions, followed spectrophotometrically in aqueous medium at 488 nm, was possible by the increase in absorbance of the cherry-red product, [Fe(CN)5PhNHNH2]3- at pH 2.8 (±0.02), at 30 (±0.1) °C, and an ionic strength (μ) of 0.02 M (KNO3). The linear calibration curves were obtained using the absorbance measured at different times (At) and thiosulfate concentrations under specified conditions. The calculated detection limit was 4.9 × 10-7 M. The Michaelis-Menten constant (Km) and equilibrium constants for the formation of complexes between catalyst and inhibitor (KCI), and the catalyst and substrate (KS) were computed from the kinetic data. A general mechanistic scheme is proposed for this reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.M. Naik, S. Prasad, R.K. Tewari, P.K. Singh, A.K. Tewari, Trans. Met. Chem. 30 (2005) 968.

    CAS  Google Scholar 

  2. R.M. Naik, R.K. Tewari, P.K. Singh, S.B.S. Yadav, Int. J. Chem. Kin. 39 (2007) 447.

    CAS  Google Scholar 

  3. R.M. Naik, J. Sarkar, D.D. Chaturvedi, Int. J. Chem. Kin. 37 (2005) 222.

    CAS  Google Scholar 

  4. S. Prasad, Trans. Met. Chem. 28 (2003) 1.

    CAS  Google Scholar 

  5. H.A. Mottola, Kinetic Aspects of Analytical Chemistry, John Wiley, New York, 1988.

    Google Scholar 

  6. H.A. Mottola, D. Perez-Bendito, Anal. Chem. 68 (1996) 257R (and references therein).

    CAS  Google Scholar 

  7. S.R. Crouch, T.F. Cullen, A. Scheeline, E.S. Kirkore, Anal. Chem. 70 (1998) 53R (and references therein).

    Google Scholar 

  8. S.R. Grouch, A. Scheeline, E.S. Kirkor, Anal. Chem. 72 (2000) 53R (and references therein).

    Google Scholar 

  9. S. Prasad, Anal. Chim. Acta 540 (2005) 173.

    CAS  Google Scholar 

  10. S. Prasad, J. Anal. Chem. 60 (2005) 587.

    Google Scholar 

  11. S. Prasad, Anal. Lett. 37 (2004) 2851.

    CAS  Google Scholar 

  12. S. Prasad, T. Halafihi, Mikrochim. Acta 142 (2003) 237.

    CAS  Google Scholar 

  13. T. Kawashima, S. Nakano, M. Tabata, M. Tanaka, TrAc., Trends Anal. Chem. 16 (1997) 132.

    CAS  Google Scholar 

  14. Y.L. Feng, H. Narasaki, L.C. Tian, S.M. Wu, H.Y. Chen, Anal. Sci. 15 (1999) 915.

    CAS  Google Scholar 

  15. R.M. Naik, P.K. Singh, R. Rastogi, R. Singh, A. Agarwal, Annali di Chemica. 97 (2007) 1169.

    CAS  Google Scholar 

  16. R.M. Naik, A. Srivastava, S. Prasad, Spectrochimica Acta Part A 69 (2008) 193.

    Google Scholar 

  17. S. Prasad, R.M. Naik, A. Srivastava, Spectrochimica Acta Part A 70 (2008) 958.

    Google Scholar 

  18. R.M. Naik, J. Sarkar, Ind. J. Chem. Tech. 12 (2005) 563.

    CAS  Google Scholar 

  19. R.M. Naik, R.K. Tiwari, P.K. Singh, S.B.S. Yadav, A. Asthana, Trans. Met. Chem. 33 (2008) 615.

    CAS  Google Scholar 

  20. F.R. George, J.H. Andrew, Calif. West Med. 23 (1925) 853.

    Google Scholar 

  21. A.F. Holleman, E. Wiberg, Inorganic Chemistry, Academic Press, San Diego, 2001.

    Google Scholar 

  22. M.G. Aylmore, D.M. Muir, Minerals Eng. 14 (2001) 135.

    CAS  Google Scholar 

  23. A. Giannousios, C. Papadopoulos, Analyst 121 (1996) 413.

    CAS  Google Scholar 

  24. M.H. Cordoba, P. Vinas, C.S. Pedreno, Talanta 32 (1985) 221 (and references therein).

    CAS  Google Scholar 

  25. A.M. Eleni, A.K. Michael, Analyst 112 (1987) 757.

    Google Scholar 

  26. M. Marquez, M. Silva, D. Perez-Bendito, Analyst 113 (1988) 1373.

    CAS  Google Scholar 

  27. D.P. Nikolelis, T.P. Hadjiioannon, Anal. Chem. 50 (1978) 205.

    CAS  Google Scholar 

  28. M. Phull, P.C. Nigam, Talanta 30 (1983) 401.

    CAS  Google Scholar 

  29. M.S. Gareia, C.S. Pedreno, M.I. Albero, Analyst 115 (1990) 989.

    Google Scholar 

  30. J. Kurzawa, K. Janowicz, A.A. Suszka, Anal. Chim. Acta 431 (2001) 149.

    CAS  Google Scholar 

  31. J. Krista, M. Kopanica, L. Novotny, Anal. Chim. Acta 386 (1999) 221.

    CAS  Google Scholar 

  32. A. Vogel, A Text book of Quantitative Inorganic Analysis, Longmans Green and Co. Ltd., London, 1962, p. 350.

    Google Scholar 

  33. R.C. Weast, CRC Handbook of Chemistry and Physics, 49th ed., The Chemical Rubber Co., Ohio, 1969, Sect. D–79.

    Google Scholar 

  34. J. Maslowska, J. Leszezynska, Talanta 32 (1985) 883.

    CAS  Google Scholar 

  35. H. Lineweaver, D. Burk, J. Am. Chem. Soc. 56 (1934) 568.

    Google Scholar 

  36. J.I. Tinoco, K. Sauer, J.C. Wang, Physical Chemistry, Principles and Applications in Biological Sciences, Prentice-Hall Inc., New Jersey, 1978, p. 351.

    Google Scholar 

  37. D. Klockow, J. Auffarth, C. Kopp, Anal. Chim. Acta 89 (1977) 37.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Tiwari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiwari, R.K., Naik, R.M., Singh, P.K. et al. Kinetic determination of trace amounts of thiosulfate based on its inhibitory effect. JICS 6, 121–128 (2009). https://doi.org/10.1007/BF03246510

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03246510

Keywords

Navigation