Skip to main content
Log in

Fluid inclusions in halite from the Röt (lower triassic) salt deposit in central Germany: Evidence for seawater chemistry and conditions of salt deposition and recrystallization

  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

The study of fluid inclusions in Lower Triassic Röt halite from the Rockensussra 2/83 borehole in northern Germany showed the presence of primary and secondary gas-liquid inclusions. The gas phase in inclusions indicates their stretching due to salt overheating at some postsedimentary stage. The homogenization temperature of inclusions indicates the overheating temperature of about 60–70°C. The overheating is additionally indicated by trails of migration of large secondary inclusions occurring inside chevrons. The major-ion (K, Mg and SO4) composition of inclusion brines was established with the use of ultramicrochemical analysis (UMCA). The results of chemical analyses of brines of primary inclusions in halite from the Rockensussra 2/83 borehole confirm the earlier results for the Röt halite from the Netherlands and Poland. The bromine content in halite is 78–107 ppm, supporting thus marine origin of halite. Brines of primary gas-liquid inclusions are thus representative samples of trapped evaporite water and they may be used for the reconstruction of the composition of Early Triassic seawater. The comparison of our analytical data with the earlier published data and models of chemical composition of seawater during the Phanerozoic which were constructed with the use of the HMW computer program makes it possible to conclude that the Early Triassic seawater was of the SO4-rich type and considering the ratios of major ions it fully corresponded to the Early Permian (Asselian-Sakmarian) seawater. It differed from the present seawater by a slight decrease of Na and Mg ions, a considerable decrease of SO4 ion (by 31%) and an increase of Ca ion (by 36%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ARCOS, D. and AYORA, C., 1997, The use of fluid inclusions in halite as environmental thermometer: an experimental study, in M.C. Boiron and J. Pironon, eds., XIV ECROFI Abstracts. Nancy, p. 10–11.

    Google Scholar 

  • AYORA, C., GARCIA-VEIGAS J., and PUEYO, J.J., 1994, X-ray microanalysis of fluid inclusions and its application to the geochemical modeling of evaporite basins: Geochimica et Cosmochimica Acta, v. 58, p. 43–55.

    Article  Google Scholar 

  • AYORA, C., CENDÓN, D.I., TABERNER, C., and PUEYO, J.J., 2001, Brine-mineral reactions in evaporite basins: implications for the composition of ancient oceans: Geology, v. 29, p. 251–254.

    Article  Google Scholar 

  • BENISON, K.C., 1995, Permian surface water temperatures from Nippewalla Group halite, Kansas: Carbonates and Evaporites, v. 10, p. 245–251.

    Article  Google Scholar 

  • BRENNAN, S.T. and LOWENSTEIN, T.K., 2002, The majorion composition of Silurian seawater: Geochimica et Cosmochivica Acta, v. 66, p. 2683–2700.

    Article  Google Scholar 

  • BRENNAN, S.T., LOWENSTEIN, T.K., and HORITA, J., 2004, Seawater chemistry and the advent of biocalcification: Geology, v. 32, p. 473–476.

    Article  Google Scholar 

  • CZAPOWSKI, G., PERYT, T.M., and RAUP, O.B., 1992, Carbonate-anhydrite-halite cycles in the Roet (Lower Triassic) of western Poland: Bulletin of the Polish Academy of Sciences, Earth Sciences, v. 40, p. 161–164.

    Google Scholar 

  • DELLWIG, L.F., 1955, Origin of Salina salt of Michigan: Journal of Sedimentary Petrology, v. 25, p. 83–110.

    Google Scholar 

  • FANLO, I. and AYORA, C., 1998, The evolution of the Lorraine evaporite basin: implications for the chemical and isotope composition of the Triassic ocean: Cheinical Geology, v. 146, p. 135–154.

    Article  Google Scholar 

  • GARCIA-VEIGAS, J., ORTI, F., and ROSELL, L., 1995, The Messinian salt of the Mediterranean: geochemical study of the salt from the Central Sicily Basin and comparison with the Lorca Basin (Spain): Société Geologique de France, Buletin, v. 166, p. 699–710.

    Google Scholar 

  • GELUK, M., 2005, Stratigraphy and tectonics of Permo-Triassic basins in the Netherlands and surrounding areas. Proefschrift Universiteit Utrecht, 171 p.

    Google Scholar 

  • GROBLEBEN, J., VOIGT, T., and SCHÖNER, R. 2008, Paläothermische Rekonstruktion und Kohlenwasserstoff-Generierung permokarboner Sedimente im Untergrund der Thüringer Mulde, in Thüringer Geologischer Verein, Exkursionsführer, 18, Jahreshauptversammmlung Heiligenstadt, p. 39–40, Jena.

    Google Scholar 

  • HARDIE, L.A., 1996, Secular variations in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y.: Geology, v. 24, p. 279–283.

    Article  Google Scholar 

  • HARVIE, C E., MÜLLER, N., and WEARE, J.H., 1984, The prediction of mineral solubilities in natural waters: The Na−K−Mg−Ca−H−Cl−SO4−OH−HCO3−CO3−CO2−H2O system to high ionic strengths at 25°C: Geochimica et Cosmochimica Acta, v. 48, p. 723–751.

    Article  Google Scholar 

  • HOFFMANN, V.E., DUNKL, I., and VON EYNATIEN, H., 2008, Thermochronologie von Gesteinen des Thüringer Beckens am Beispiel der Bohrung Rockensussra, in Thüringer Geologischer Verein, Exkursionsführer, 18. Jahreshauptversammlung Heiligenstadt, p. 41, Jena.

    Google Scholar 

  • HOLLAND, H.D., 2003, The geologic history of seawater, in H.D. Holland and K.K. Turekian, eds., Treatise on Geochemistry. Elsevier, v. 6, p. 583–625.

    Google Scholar 

  • HOLDOWAY, K.A., 1974, Behavior of fluid inclusions in salt during heating and irradiation, in A.H. Coogan, ed., Fourth International Symposium on Salt. Northern Ohio Geological Society, Cleveland, v. 1, p. 303–312.

    Google Scholar 

  • HOLSER, W.T., 1966, Bromide geochemistry of salt rocks, in J.L. Rau, ed., 2nd Symposium on Salt. Northern Ohio Geological Society, Cleveland, v. 1, p. 248–275.

    Google Scholar 

  • HOLSER, W.T., 1979, Trace elements and isotopes in evaporites: Mineralogical Society of America, Reviews in Mineralogy, v. 6, p. 295–346.

    Google Scholar 

  • HOLSER, W.T. and WILGUS, C.R., 1981, Bromide profiles of the Röt salt, Triassic of northern Europe, as evidence of its marine origin: Neues Jahrbuch für Mineralogie Monatshefte, no. 6, p. 267–276.

    Google Scholar 

  • HORITA, J., ZIMMERMANN, H., and HOLLAND, H.D., 2002, Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporites: Geochimica et Cosmochimica Acta, v. 66, p. 3733–3756.

    Article  Google Scholar 

  • KIRKLAND, D.W., DENISON, R.E., and DEAN, W E., 2000, Parent brine of the Castile evaporites (Upper Permian), Texas and New Mexico: Journal of Sedimentary Research, v. 70, p. 749–761.

    Article  Google Scholar 

  • KOVALEVICH, V.M., 1975, Thermometric studies of inclusions in artificial crystals of halite: Fluid Inclusion Research, v. 8, p. 72.

    Google Scholar 

  • KOVALEVICH, V.M., 1978, Fiziko-khimicheskiye usloviya formirovaniya soley Stebnikskogo kaliynogo mestorozhdeniya: Naukova Dumka, Kyiv, 100 p.

    Google Scholar 

  • KOVALEVICH, V.M., 1988, Phanerozoic evolution of ocean water composition: Geochemistry International, v. 25, p. 20–27.

    Google Scholar 

  • KOVALEVICH, V.M., 1990, Galogenez i khimicheskaya evolutsiya okeana v fanerozoye: Naukova Dumka, Kyiv, 154 p.

    Google Scholar 

  • KOVALEVICH, V.M., JARMOLOWICZ-SZULC, K., PERYT, T.M., and POBEREGSKL A.V., 1997, Messinian chevron halite from the Red Sea (DSDP Sites 225 and 227): fluid inclusion study: Neues Jahrbuch ftir Mineralogie Monatshefte, no. 10, p. 433–450.

    Google Scholar 

  • KOVALEVICH, V.M., PERYT, T.M., and PETRICHENKO, O.I., 1998, Secular variation in seawater chemistry during the Phanerozoic as indicated by brine inclusions in halite: Journal of Geology, v. 106, p. 695–712.

    Article  Google Scholar 

  • KOVALEVYCH, V. and HAUBER, L., 2000, Fluid inclusions in halite from the Middle Triassic salt deposits in northern Switzerland: evidence for seawater chemistry, in R. Geertman, ed., 8th World Salt Symposium. Elsevier, v. 1, p. 143–148.

    Google Scholar 

  • KOVALEVYCH, V.M, PERYT, T.M., CARMONA, V., SYDOR, D.V., VOVNYUK, S.V., and HALAS, S., 2002a, Evolution of Permian seawater: evidence from fluid inclusions in halite: Neues Jahrbuch few Mineralogie Abhandlungen, v. 178, p. 27–62.

    Article  Google Scholar 

  • KOVALEVYCH, V., PERYT, T.M., BEER, W., GELUK, M., and HALAS, S., 2002b, Geochemistry of Early Triassic seawater as indicated by study of the Roet halite in the Netherlands, Germany and Poland: Chemical Geology, v. 182, p. 549–563.

    Article  Google Scholar 

  • KOVALEVYCH, V.M., CARMONA, V., PUEYO, J.J., and PERYT, T.M., 2005, Ultramicrochemical Analyses (UMCA) and Cryogenic Scanning Electron Microscopy (Ciyo-SEM-EDS) of brines in halite-hosted fluid inclusions: a comparative study of analytical data: Geochemistry International, v. 43, p. 268–276.

    Google Scholar 

  • KOWALEWICZ, W.M., 1994, Warunki powstania soli retu w zachodniej Polsce: badania inkluzji fluidalnych: Przeglqd Geologiczny, v. 42, p. 34–38.

    Google Scholar 

  • LAZAR, B. and HOLLAND, H., 1988, The analysis of fluid inclusions in halite: Geochimica et Cosmochimica Acta, v. 52, p. 485–490.

    Article  Google Scholar 

  • LOWENSTEIN, T.K. and HARDIE, L.A, 1985, Criteria for the recognition of salt-pan evaporites: Sedimentology, v. 32, p. 627–644.

    Article  Google Scholar 

  • LOWENSTEIN, T.K., HARDIE, L.A., TIMOFEEFF, M.N., and DEMICCO, R.V., 2003, Secular variation in seawater chemistry and the origin of calcium chloride basinal brines: Geology, v. 31, p. 857–860.

    Article  Google Scholar 

  • LOWENSTEIN, T.K., TIMOFEEFF, M.N., BRENNAN, S.T., HARDIE, L.A., and DEMICCO, R.V., 2001, Oscillations in Phanerozoic seawater chemistry: Evidence from fluid inclusions: Science, v. 294, p. 1086–1088.

    Article  Google Scholar 

  • LOWENSTEIN, T.K., TIMOFEEFF, MN., KOVALEVYCH, V.M., and HORITA, J., 2005, The major-ion composition of Permian seawater: Geochimica et Cosmochimica Acta, v. 69, p. 1701–1719.

    Article  Google Scholar 

  • MCCAFFREY, M.A., LAZAR, B., and HOLLAND, H.D., 1987, The evaporation path of seawater and the coprecipitation of Br and K+ with halite: Journal of Sedimentary Petrology, v. 57, p. 928–937.

    Google Scholar 

  • PÁUL, J., 2006, Facies analysis and sequence stratigraphy of an evaporitic-fluviatile unit: The Röt (Lower Triassic, Germany): Neues Jahrbuch für Geologie und Paldontologie Abhandlungen, v. 242, p. 103–132.

    Google Scholar 

  • PETRICHENKO, O.I., 1989, Epigenez evaporitov. Naukova Dumka, Kyiv, 64 p.

    Google Scholar 

  • PETRYCHENKO, O.Yo., 1973, Metody doslidzhennya vkluchen u mineralakh galogennykh porid. Naukova Dumka, Kyiv, 92 p.

    Google Scholar 

  • Petrychenko, O.Y. and Peryt, T.M., 2004, Geochemical conditions of deposition in the Upper Devonian hypiac’ and Dnipro-Donets evaporite basins (Belarus and Ukraine): Journal of Geology, v. 112, p. 577–592.

    Article  Google Scholar 

  • ROBERTS, S.M. and SPENCER, R.J., 1995, Paleotemperatures preserved in fluid inclusions in halite: Geochimica et Cosrnochimica Acta, v. 59, p. 3929–3942.

    Article  Google Scholar 

  • ROEDDER, E., 1984, Fluids inclusions: Mineralogical Society of America, Reviews in Mineralogy, v. 12, 644 p.

    Google Scholar 

  • RÖHLING, H.-G., 1991, A lithostratigraphic subdivision of the Lower Triassic in the northwest German lowlands and the German sector of the North Sea, based on gamma ray and sonic logs: Geologisches Jahrbuch, v. A119, p. 3–24.

    Google Scholar 

  • SCHOLLE, P.A., 1995, Carbon and sulfur isotope stratigraphy of the Permian and adjacent intervals, in P.A. Scholle, T.M. Peryt, and D.S. Ulmer-Scholle, eds., The Permian of Northern Pangea. Springer, Berlin, v. 1, p. 133–149.

    Chapter  Google Scholar 

  • SHAIDETSKA, V.S., 1997, The geochemistry of Neogene evaporites of Transcarpathian trough in Ukraine: Slovak Geological Magazine, v. 3, p. 193–200.

    Google Scholar 

  • SPENCER, R.J. and HARDIE, L.A., 1990, Control of seawater composition by mixing of river waters and mid-ocean ridge hydrothermal brines. Geochemical Society Special Publication, v. 19, p. 409–419.

    Google Scholar 

  • VALIASHKO, M.G., 1951, Strukturnyye osobennosti otlozheniy sovremennogo galita: Mineralogicheskiy sbornik Lvovskogo Geologicheskogo obshchestva,v. 5, p. 65–74.

    Google Scholar 

  • VALIASHKO, M.G., 1956, Geochemistry of bromide in the processes of salt deposition and the use of the bromide content as a genetic and prospecting tool: Geochemistry USSR,v. 6, p. 570–587.

    Google Scholar 

  • ZIMMERIVIANN, H., 2000, Tertiary seawater chemistry — implications from primary fluid inclusions in marine halite: American Journal of Science, v. 300, p. 3–45.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovalevych, V., Paul, J. & Peryt, T.M. Fluid inclusions in halite from the Röt (lower triassic) salt deposit in central Germany: Evidence for seawater chemistry and conditions of salt deposition and recrystallization. Carbonates and Evaporites 24, 45–57 (2009). https://doi.org/10.1007/BF03228056

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03228056

Keywords

Navigation