Skip to main content
Log in

Recent advances in bismuth-based superconductors

  • Superconductor
  • Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Significant progress has been made in the development of high-critical-temperature (high-Tc) mono- and multifilament bismuth-based superconductors by the powder-in-tube (PIT) technique. High critical current density (Jc) has been achieved in both short- and long-length monofilament conductors. Jcs up to 1.2 × 104 A/cm2 were achieved in an 850 m long multifilament conductor. Pancake-shaped coils and test magnets, fabricated from long conductors, were characterized at various temperatures and applied magnetic fields. One such magnet containing 480 m of high-Tc tape generated a record-high field of 2.6 T at 4.2 K. Multifilament conductors appear to possess better mechanical properties and retain a higher percentage of their initial critical current under strain than monocore conductors, which is important for practical considerations. PIT processing of superconducting tapes with Ag-Al2O3 as the sheath material is perhaps another route to improve mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

erences

  1. U. Balachandran et al., JOM, 45 (1993), p. 54.

    Article  CAS  Google Scholar 

  2. S.X. Dou et al., Supercond. Sci. Technol., 6 (1993), p. 297.

    CAS  Google Scholar 

  3. K. Sato et al., IEEE Trans. Mag., 27 (1991), p. 1231.

    CAS  Google Scholar 

  4. R. Flukiger et al., Appl. Supercond., 1 (1993), p. 709.

    Google Scholar 

  5. S. Jin, Processing of Long Lengths of Superconductors, ed. U. alachandran, et al. (Warrendale, PA: TMS, 1994), p. 3.

    Google Scholar 

  6. E.H. Hellstrom, MRS Bulletin, XVII (1992), p. 45.

    Google Scholar 

  7. K.H. Sandhage et al., JOM, 43 (1991), p. 21.

    Article  CAS  Google Scholar 

  8. P. Haldar et al., JOM, 44 (1992), p. 54.

    Article  CAS  Google Scholar 

  9. J. Tenbrink et al., IEEE Trans. Mag., 27 (1991), p. 1239.

    CAS  Google Scholar 

  10. G.N. Riley, Jr., Amer. Cer. Soc. Bull., 72 (1993), p. 91.

    CAS  Google Scholar 

  11. H. Maeda et al., Jpn. J. Appl. Phys., 27 (1988), p. L209.

    CAS  Google Scholar 

  12. P. Majewsky et al., Adv. Mater., 3 (1991), p. 488.

    CAS  Google Scholar 

  13. K. Schulze et al., Z. Metal, 81 (1990), p. 836.

    CAS  Google Scholar 

  14. B. Hong et al., J. Mater. Res., 73 (1990), p. 1965.

    CAS  Google Scholar 

  15. M. Takano et al., Jpn. J. Appl. Phys., 27 (1988), p. 1041.

    Google Scholar 

  16. L. Pierre et al., J. Appl. Phys., 68 (1990), p. 2296.

    CAS  Google Scholar 

  17. S.X. Dou et al., Phys. Rev. B, 40 (1989), p. 5266.

    CAS  Google Scholar 

  18. P. Krishnaraj et al., Physica C, 215 (1993), p. 305.

    CAS  Google Scholar 

  19. B. Sarkar et al., Mat. Res. Bull., 28 (1993), p. 263.

    CAS  Google Scholar 

  20. S.E. Dorris et al., Physica C, 212 (1993), p. 66.

    CAS  Google Scholar 

  21. K. Aota et al., Jpn. J. Appl. Phys., 28 (1989), p. L2196.

    CAS  Google Scholar 

  22. J.C. Grivel et al., Supercond. Sci. Technol., 6 (1993), p. 725.

    CAS  Google Scholar 

  23. A. Oota et al., Jpn. J. Appl. Phys., 28 (1989), p. L1171.

    CAS  Google Scholar 

  24. L.R. Motowidlo et al., Appl. Phys. Lett., 59 (1991), p. 736.

    CAS  Google Scholar 

  25. Y. Obst et al., Supercond. Sci. Technol., 4 (1991), p. 165.

    Google Scholar 

  26. Q. Li et al., Physica C, 217 (1993), p. 360.

    CAS  Google Scholar 

  27. P. Haldar et al., IEEE Trans. Appl. Supercond., 3 (1993), p. 1127.

    Google Scholar 

  28. J. Yau et al., J. Mater. Syn. Proc, 2 (1994), p. 45.

    CAS  Google Scholar 

  29. H. Mukai et al. (Paper presented at MRS Spring Meeting, San Francisco, CA, 27 April 1992).

    Google Scholar 

  30. L.R. Motowidlo et al. (Paper presented at MRS Spring Meeting, San Francisco, CA, 12 April 1993).

    Google Scholar 

  31. U. Balachandran et al., Appl. Supercond., 2 (1994), p. 251.

    CAS  Google Scholar 

  32. G. Reis, Cryogenics, 33 (1993), p. 609.

    Google Scholar 

  33. J. Lohle, Cryogenics, 33 (1993), p. 287.

    Google Scholar 

  34. J.W. Ekin, Materials at Low Temperatures, ed..R.P. Reed and A.F. Clark (Metals Park, OH: ASM, 1983), p. 494.

    Google Scholar 

  35. A. Otto, JOM, 45 (1993), p. 48.

    Article  CAS  Google Scholar 

  36. J.P. Singh et al., J. Mater. Res., 8 (1993), p. 2458.

    CAS  Google Scholar 

  37. Y. Mutoh et al., Jpn. J. Appl. Phys., 29 (1990), p. L1432.

    CAS  Google Scholar 

  38. N. Murayama et al., Jpn. J. Appl. Phys., 28 (1989), p. L1740.

    CAS  Google Scholar 

  39. J. Cai et al., Supercond. Sci. Technol., 5 (1992), p. 599.

    CAS  Google Scholar 

  40. J.E. Tkaczyk et al., IEEE Trans. Appl. Supercond., 3 (1993), p. 946.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balachandran, U., Iyer, A.N., Huang, J.Y. et al. Recent advances in bismuth-based superconductors. JOM 46, 23–25 (1994). https://doi.org/10.1007/BF03222657

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03222657

Keywords

Navigation