Skip to main content
Log in

The Thermodynamics and Kinetics of film agglomeration

  • This Films and Interface
  • Tutorial
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Agglomeration is a common problem in all technological areas that depend on the integrity and continuity of films. The origin of agglomeration of thin films has been traced to its thermodynamic roots. This article demonstrates that both stress and surface tension effects play major roles in determining the overall stability of a film to agglomeration. However, complete agglomeration—uncovering the substrate and the formation of well-separated islands—will only occur if the operative surface and interfacial tensions favor dewetting or partial wetting. The formation of holes and/or hillocks may be favored by the commonplace large stresses in a film. Such holes and/or hillocks can provide a means of stress relaxation in the film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Kane, J.P. Spratt, and L. W. Herschinger, J. Appl. Phys., 37 (1966), p. 2085.

    CAS  Google Scholar 

  2. P. Scharnhorst, Surf. Sci., 15 (1969), p. 380.

    Google Scholar 

  3. H. Jaeger, P. Mercer, and G. Sherwood, Surf. Sci., 13 (1969), p. 502.

    CAS  Google Scholar 

  4. R.E. Hummel et al., Thin Solid Films, 78 (1981), p. 1.

    CAS  Google Scholar 

  5. D.C. Agrawal and R. Raj, Acta Metall., 37 (1989), p. 2035.

    Google Scholar 

  6. C.M. Kennefick and R. Raj, Acta Metall., 37 (1989), p. 2947.

    CAS  Google Scholar 

  7. T. Nolan, R. Beyers, and R. Sinclair, Mat. Res. Soc. Symp. Proc., 202 (1991), p. 95.

    CAS  Google Scholar 

  8. Z.G. Xiao et al., Mat.Res. Soc. Symp. Proc., 202 (1991), p. 101.

    CAS  Google Scholar 

  9. S.K. Sharma and J. Spitz, Thin Solid Films, 65 (1980), p. 339.

    CAS  Google Scholar 

  10. A.D. Paddock and J.R. Black, J. Electrochem. Soc., 115 (1968), p. 70C.

    Google Scholar 

  11. W.B. Pennebaker, J. Appl. Phys., 40 (1969), p. 394.

    CAS  Google Scholar 

  12. V.A. Mazur and M.G. Goldiner, Phys. Lett., A137 (1989), p. 69.

    Google Scholar 

  13. H.L. Caswell, J.R. Priest, and J.R. Budo, J. Appl Phys., 34 (1963), p. 3261.

    CAS  Google Scholar 

  14. F. d'Heurle, L. Berenbaum, and R. Rosenberg, Trans. Met. Soc. AIME, 242 (1968), p. 502.

    Google Scholar 

  15. C. Herring, Structure and Properties of Solid Surfaces, ed. R. Gomer and C.S. Smith (Chicago, IL: University of Chicago Press, 1952).

    Google Scholar 

  16. M.G. Goldineret al., Sov. Phys. Chem. of Mater. Process., 4 (1978), p. 112.

    Google Scholar 

  17. E. Bauer, Z. Kristallogr., 110 (1958), p. 372.

    CAS  Google Scholar 

  18. A.N. Frumkin, Sov. J. Phys. Chem., 12 (1938), p. 377.

    Google Scholar 

  19. A.N. Frumkin and A. Gorodetskaya, Sov. J. Phys. Chem., 12 (1938), p. 511.

    Google Scholar 

  20. J.I. Frenkel, Kinetic Theory of Liquids (Leningrad: Nauka, 1975).

    Google Scholar 

  21. W.W. Mullins, Acta Metall., 6 (1958), p. 414.

    Google Scholar 

  22. F. Brochard-Wyart and J. Daillant, Can. J. Phys., 68 (1990), p. 1084.

    Google Scholar 

  23. W.W. Mullins, Metal Surfaces: Structure Energetics and Kinetics(Metals Park, OH: Am. Soc. Metals, 1963).

    Google Scholar 

  24. S.Y. Lee, R.E. Hummel, and R.T. DeHoff, Thin Solid Films, 149 (1987), p. 29.

    CAS  Google Scholar 

  25. F.Y. Genin, Ph.D. Dissertation-Carnegie Mellon University (1991).

  26. W.W. Mullins, J. Appl Phys., 28 (1957), p. 260.

    Google Scholar 

  27. D.J. Srolovitz and S.A. Safran, J. Appl. Phys., 60 (1986), p. 247.

    CAS  Google Scholar 

  28. K.T. Miller, F.F. Lange, and D.B. Marshall, J. Mater. Res., 5 (1990), p. 151.

    CAS  Google Scholar 

  29. S.A. Hackney, Scripta Metall., 22 (1988), p. 1273.

    CAS  Google Scholar 

  30. D.J. Srolovitz and S.A. Safran, Phil Mag. A, 52 (1985), p. 793.

    CAS  Google Scholar 

  31. L.B. Freund and Y. Hu, U.S. Dept. of Defense Tech. Rep. AD-A193 461/1/XAB (1988).

  32. C. Liang and J.W. Hutchinson, unpublished research (1991).

  33. W. Yang and D.J. Srolovitz, unpublished research (1991).

  34. R.J. Asaro and W.A. Tiller, Met. Trans., 3 (1972), p. 1789.

    CAS  Google Scholar 

  35. M.A. Grinfeld, Sov. Phys. Dokl., 31 (1987), p. 831.

    Google Scholar 

  36. M.A. Grinfeld, Thermodynamic Methods in the Theory of Heterogeneous Systems (New York: Wiley, 1991).

    Google Scholar 

  37. D.J. Srolovitz, Acta Metall., 37 (1989), p. 621.

    Google Scholar 

  38. P. Noziéres, Solids Far From Equilibrium, ed. C. Godreche (London: Cambridge Univ. Press, 1991).

    Google Scholar 

  39. H. Gao, Int. J. Solids Structures, 28 (1991), p. 703.

    Google Scholar 

  40. B.J. Spencer, P.W. Voorhees, and S.H. Davis, Phys. Rev. Lett., 67 (1991), p. 3696.

    CAS  Google Scholar 

  41. B.J. Spencer, S.H. Davis, and P.W. Voorhees, Phys. Rev. B, 47 (1993), p. 9760.

    Google Scholar 

  42. L.B. Freund and F. Jonsdottir, J. Mech. Phys. Solid, 41 (1993), p. 1245.

    Google Scholar 

  43. W.H. Yang and D.J. Srolovitz, Phys. Rev. Lett., 71 (1993), p. 1593.

    Google Scholar 

  44. W. Yang and D.J. Srolovitz, J. Mech. Phys. Solids, 42 (1994), p. 1551.

    Google Scholar 

  45. C.H. Chin and H. Gao, Int. J. Solids Struct., 30 (1993), p. 2983.

    Google Scholar 

  46. B.J. Spencer and D.I. Meiron, Acta Metall. Mater., 42 (1994), p. 3629.

    Google Scholar 

  47. J.R. Rice and T.J. Chuang, J. Am. Ceram. Soc., 64 (1981), p. 46.

    CAS  Google Scholar 

  48. F.Y. Genin, W.W. Mullins, and P. Wynblatt, Acta Metall. Mater., 41 (1993), p. 3541.

    CAS  Google Scholar 

  49. E.G. Colgan, C.-Y. Li, and J.W. Mayer, Appl. Phys. Lett., 51 (1987), p. 424.

    CAS  Google Scholar 

  50. J.E. Sanchez and E. Arzt, Scripta Metall Mater., 27 (1992), p. 285.

    CAS  Google Scholar 

  51. Ya. E. Geguzin, N.A. Makarovsky, and V.V. Bogdanov, Phys. Met. Metallogr., 44 (1977), p. 85.

    Google Scholar 

  52. N. Kristensen et al., J. Appl. Phys., 69 (1991), p. 2097.

    CAS  Google Scholar 

  53. A.E.B. Presland, G.L. Price, and D.L. Trimm, Surface Sci., 29 (1972), p. 424.

    CAS  Google Scholar 

  54. Ya.E. Geguzin et al., Phys. Metal. Metallogr., 39 (1975), p. 71.

    Google Scholar 

  55. C.J. Santoro, J. Electrochem. Soc., 116 (1969), p. 361.

    CAS  Google Scholar 

  56. S.K. Lahiri and O.C. Wells, Appl Phys. Lett., 15 (1969), p. 234.

    Google Scholar 

  57. P. Chaudhari, J. Appl. Phys., 45 (1974), p. 4339.

    CAS  Google Scholar 

  58. D.J. Srolovitz and S.A. Safran, J. Appl Phys., 60 (1986), p. 255.

    CAS  Google Scholar 

  59. R.H. Brandon and F.J. Bradschaw, Royal Aircraft Establishment Res. Rep. No. 66095 (1966).

  60. T.H. Courtney and J.C. Malzahn Kampe, Acta Metall, 37 (1989), p. 1747.

    CAS  Google Scholar 

  61. E. Jiran and C.V.Thompson, J. Electron. Mater., 19(1991), p. 1153.

    Google Scholar 

  62. D.J. Srolovitz and S.A. Safran, unpublished research (1992).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srolovitz, D.J., Goldiner, M.G. The Thermodynamics and Kinetics of film agglomeration. JOM 47, 31–36 (1995). https://doi.org/10.1007/BF03221433

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03221433

Keywords

Navigation