Skip to main content
Log in

The constitutive behavior of refractory metals as a function of strain rate

  • Deformation and Fracture
  • Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The constitutive response and deformation mechanisms in refractory metals with a hexagonal close packed (hcp) crystal structure are reviewed. The research focuses on the high-strain-rate stress-strain response under uniaxial compressive loading and the associated microstructural deformation mechanisms. Some aspects relating to dynamic failure such as adiabatic shear banding in refractory metals and subsequent failure processes are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Edward N.C. Dalder, Tony Grobstein, and Charles S. Olsen, ed., Evolution of Refractory Metals and Alloys (Warrendale, PA: TMS, 1993), p. vii.

    Google Scholar 

  2. L.S. Magness and D. Kapoor, “Flow-Softening Tungsten Composites for Kinetic Energy Penetrator Applications,” Proceedings of the Second International Conference on Tungsten and Refractory Metals,ed. Animesh Bose and Robert J. Dowding (Princeton, NJ: MPIF, 1994), pp.11–20.

    Google Scholar 

  3. E.K. Ohriner, V.K. Sikka, and D. Kapoor, “Processing and Properties of Extruded Tungsten-Hafnium and Tungsten-Steel Composites,” Proceedings of the Second International Conference on Tungsten and Refractory Metals, ed. Animesh Bose and Robert J. Dowding (Princeton, NJ: Metal Powder Industries Federation, 1994), pp. 219–226.

    Google Scholar 

  4. D. Edelman, B.J. Pletka, and G. Subhash, “Mechanically Alloying of W-Hf-Ti Alloys,” Proceedings of the Second International Conference on Tungsten and Refractory Metals, ed. Animesh Bose and Robert J. Dowding (Princeton, NJ: Metal Powder Industries Federation, 1994), pp.227–234.

    Google Scholar 

  5. M.A. Meyers et al., Mechanics of Materials, 17 (1994), pp. 175–193.

    Google Scholar 

  6. G. Subhash and G. Ravichandran, “High Strain Rate Behavior and Localization in Hafnium,” Experimental Techniques in the Dynamics of Deformable Solids, ed. K.T. Ramesh, AMD-Vol. 152 (New York: ASME, 1993), pp. 79–84.

    Google Scholar 

  7. G. Subhash and G. Ravichandran, “High Strain Rate Behavior of Localization in Hafnium,” Proceedings of 13th Army Symposium on Solid Mechanics, eds. S.C. Chou et al. (1993), pp. 621–631.

    Google Scholar 

  8. G. Subhash, B.J. Pletka, and G. Ravichandran, “Constitutive Response and Characterization of Deformation modes in Hafnium,” Proceedings of the Second International Conference on Tungsten and Refractory Metals, ed. Animesh Bose and Robert J. Dowding (Princeton, NJ: Metal Powder Industries Federation, 1994), pp.673–680.

    Google Scholar 

  9. G. Ravichandran, Materials and Manufacturing Processes, 9 (6) (1994), pp. 1031–1046.25.

    CAS  Google Scholar 

  10. B.J. Koeppel and G. Subhash, “Constitutive Response and Characterization of Deformation Modes in Rhenium,” Proceedings of the Second International Conference on Tungsten and Refractory Metals, ed. Animesh Bose and Robert J. Dowding (Princeton, NJ: Metal Powder Industries Federation, 1994), pp. 673–680.

    Google Scholar 

  11. B.J. Koeppel and G. Subhash, “Plastic Response and Deformation Microstructures in Rhenium,” to appear in the Proceedings of the ASME-Summer Meeting, UCLA (1995).

    Google Scholar 

  12. S. Naka, L.P. Kubin, and C. Perrier, Phil Mag. A, 63(5) (1991), pp. 1035–1043.

    CAS  Google Scholar 

  13. V. Vitek, and M. Igarashi, Phil. Mag. A, 63(5) (1991), pp. 1059–1075.

    Google Scholar 

  14. F.D. Rosi, F.C. Perkins, and L.L. Seigle, J. Metals, Trans. AIME (February 1954), pp. 115–122.

    Google Scholar 

  15. F.D. Rosi, J. Metals, Trans. AIME (January 1954), pp. 58–69.

    Google Scholar 

  16. E.D. Levine, Trans. Metall. Soc. AIME, 236, (November, 1966), pp. 1558–1565.

    CAS  Google Scholar 

  17. A. Akhtar and A. Teghtsoonian, Acta Metallurgica, 19 (July 1971), pp. 655–663.

    CAS  Google Scholar 

  18. G. Das, and T.E. Mitchell, Metall. Trans, 4 (1973), pp. 1405–1413.

    CAS  Google Scholar 

  19. T. Hayashi et al., Materials and Manufacturing Processes, 9 (6) (1994), pp. 1047–1060.

    CAS  Google Scholar 

  20. Edwin D. Sayre, “Application of Rhenium and Rhenium Containing Alloys,” Evolution of Refractory Metals and Alloys, ed. Edward N.C. Dalder, Tony Grobstein, and Charles S. Olsen (Warrendale, PA: TMS, 1993), pp. 191–200.

    Google Scholar 

  21. B.D. Bryskin, Adv. Mater. & Processes, 142(3) (1992), pp. 22–27.

    CAS  Google Scholar 

  22. A.J. Sherman, R.H. Tuffias, and R.B. Kaplan, JOM, 43 (July 1991).

    Google Scholar 

  23. B.D. Bryskin, and F.C. Danek, JOM,43 (July 1991), pp. 24–26.

    Article  CAS  Google Scholar 

  24. A. De Crecy et al., Phil. Mag A, 47(2) (1983), pp. 245–254.

    CAS  Google Scholar 

  25. F.W. Vahldiek, J. Less. Comm. Metals, 19 (1969), pp. 83–92.

    CAS  Google Scholar 

  26. E.J. Rapperport and C.S. Hartley, Trans. of the Met. Soc. of AIME, 218 (October, 1960), pp. 869–877.

    Google Scholar 

  27. G.T. Gray III, C.E. Morris, and A.C. Lawson, “Omega Phase Formation in Titanium and Titanium Alloys,” Titanium '92: Science and Technology, ed. F. Froes and I.L. Caplan (Warrendale, PA: TMS, 1993), pp. 225–232.

    Google Scholar 

  28. M.H. Yoo, C.L. Fu, and J.K. Lee, J. Phys. III, 1 (1991), pp. 1065–1084.

    CAS  Google Scholar 

  29. Ch.V. Kopetskiy et al., Phy. of Met. & Metallography, 39(1) (1975), pp. 164–174.

    Google Scholar 

  30. A.T. Churchman, Trans, of the Met. Soc. of AIME, 218 (April, 1960), pp. 262–267.

    CAS  Google Scholar 

  31. R.A. Jeffery and E. Smith, Phil. Mag., 8 (1966), pp. 1163–1168.

    Google Scholar 

  32. A. Serra, R.C. Pond, and D.J. Bacon, Acta. Metall. Mater., 39(7) (1991), pp. 1469–1480.

    CAS  Google Scholar 

  33. M.H. Yoo and J.K. Lee, Phil. Mag. A, 63(5) (1991), pp. 987–1000.

    CAS  Google Scholar 

  34. S.G. Song and G.T. Gray III, Phil. Mag., (1995) to appear.

    Google Scholar 

  35. G.T. Gray III, “Deformation Twinning: Influence of Strain Rate,” Twinning in Advanced Materials, ed. M.H. Yoo and M. Wuttig (Warrendale, PA: TMS, 1994), pp. 337–349.

    Google Scholar 

  36. G.T. Gray III, “Deformation Substructures Induced by High Strain Rate Deformation,” Modelling the Deformation of Crystalline Solids, ed. Terry C. Lowe et al, (Warrendale, PA: TMS, 1991), pp. 145–158.

    Google Scholar 

  37. M. Griffiths, Phil. Mag. A, 63(5) (1991), pp. 835–847.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subhash, G. The constitutive behavior of refractory metals as a function of strain rate. JOM 47, 55–58 (1995). https://doi.org/10.1007/BF03221179

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03221179

Keywords

Navigation