Skip to main content
Log in

Fluorogenic conjugated polymer fibers from amphiphilic diacetylene supramolecules

  • Notes
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Conclusions

We have developed a simple strategy for the preparation of fluorogenic polydiacetylene fibers. The diacetylenic isophthalic acid PCDA-IPA was found to form microfibers when warm aqueous ethanolic solutions are cooled to room temperature. Irradiation of the self-assembled diacetylene wires with 254 nm UV light afforded blue-colored polydiacetylene wires, as evidenced by optical, fluorescence and scanning electron microscopic analyses. Relatively long polymer ribbons (ca. 100 μm) were obtained when 30–50% H2O-EtOH solvent systems are used while much shorter wires (< 10 μm) form in 60% H2O-EtOH. Thus, wire lengths can be varied by changing solvents. Importantly, the nonfluorescent polymerized ribbons were transformed to fluorescent PDAs upon heating. The observations made in this effort should be useful in the development of new and interesting PDA-based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reviews on polydiacetylenes: (a) S. Okada, S. Peng, W. Spevak, and D. Charych,Acc. Chem. Res.,31, 229 (1998); (b) R. Jelinek,Drug. Develop. Res.,50, 497 (2000); (c) R. W. Carpick, D. Y. Sasaki, M. S. Marcus, M. A. Eriksson, and A. R. Burns,J. Phys.: Condens. Matter.,16, R679 (2004); (d) A. Mueller and D. F. O’Brien,Chem. Rev.,102, 727 (2002); (e) H. Ringsdorf, B. Schlarb, and J. Venzmer,Angew. Chem. Int. Ed.,27, 113 (1988); (f) W. Zhou, Y. Li, and D. Zhu,Chem. Asian J.,2, 222 (2002); (g) A. Sarkar, S. Okada, H. Matsuzawa, H. Matsuda, and H. Nakanishi,J. Mater. Chem.,10, 819 (2000).

    Article  CAS  Google Scholar 

  2. Y. Okawa and M. Aono,Nature,409, 683 (2001).

    Article  CAS  Google Scholar 

  3. Y. Lu, Y. Yang, A. Sellinger, M. Lu, J. Huang, H. Fan, R. Haddad, G. Lopez, A. R. Burns, D. Y. Sasaki, J. Shelnutt, and C. J. Brinker,Nature,410, 913 (2001).

    Article  CAS  Google Scholar 

  4. G. Wegner,Makromol. Chem.,154, 35 (1972).

    Article  CAS  Google Scholar 

  5. D. H. Charych, J. O. Nagy, W. Spevak, and M. D. Bednarski,Science,261, 585 (1993).

    Article  CAS  Google Scholar 

  6. J. Y. Chang, J. H. Baik, C. B. Lee, and S.-K. Hong,J. Am. Chem. Soc.,119, 3197 (1997).

    Article  CAS  Google Scholar 

  7. Z. Yuan, C.-W. Lee, and S.-H. Lee,Angew. Chem. Int. Ed.,43, 4197 (2004).

    Article  CAS  Google Scholar 

  8. S. K. Chae, H. Park, J. Yoon, C. H. Lee, D. J. Ahn, and J.-M. Kim,Adv. Mater.,19, 521 (2007).

    Article  CAS  Google Scholar 

  9. J.-M. Kim, Y. B. Lee, S. K. Chae, and D. J. Ahn,Adv. Func. Mater.,16, 2103 (2006).

    Article  CAS  Google Scholar 

  10. J.-M. Kim, Y. B. Lee, D. H. Yang, J.-S. Lee, G. S. Lee, and D. J. Ahn,J. Am. Chem. Soc.,127, 17580 (2005).

    Article  CAS  Google Scholar 

  11. D. J. Ahn, E.-H. Chae, G. S. Lee, H.-Y. Shim, T.-E. Chang, K.-D. Ahn, and J.-M. Kim,J. Am. Chem. Soc.,125, 8976 (2003).

    Article  CAS  Google Scholar 

  12. J. Kim, J.-M. Kim, and D. J. Ahn,Macromol. Res.,14, 478 (2006).

    Article  CAS  Google Scholar 

  13. K.-W. Kim, H. Choi, G. S. Lee, D. J. Ahn, M.-K. Oh, and J.-M. Kim,Macromol. Res.,14, 483 (2006).

    Article  CAS  Google Scholar 

  14. H. Gan, H. Liu, Y. Li, Q. Zhao, Y. Li, S. Wang, T. Jiu, N. Wang, X. He, D. Yu, and D. Zhu,J. Am. Chem. Soc.,127, 12452 (2005); (b) B. N. Thomas, R. C. Corcoran, C. L. Cotant, C. M. Lindemann, J. E. Kirsch, and P. J. Persichini,J. Am. Chem. Soc.,120, 12178 (1998); (c) D. A. Frankel and D. F. O’Brien,J. Am. Chem. Soc.,116, 10057 (1994); (d) M. Masuda, T. Hanada, K. Yase, and T. Shimizu,Macromolecules,31, 9403 (1998); (e) M. Shirakawa, N. Fujita, and S. Shinkai,J. Am. Chem. Soc.,127, 4164 (2005); (f) T. Onodera, T. Oshikiri, H. Katagi, H. Kasai, S. Okada, H. Oikawa, M. Terauchi, M. Tanaka, and H. Nakanishi,J. Crystal Growth,229, 586 (2001); (g) S. B. Lee, R. Koepsel, D. B. Stolz, H. E. Warriner, and A. J. Russell,J. Am. Chem. Soc.,126, 13400 (2004). (15) (a) Q. Cheng, M. Yamamoto, and R. C. Stevens,Langmuir,16, 5333 (2000); (b) J. Song, Q. Cheng, S. Kopta, and R. C. Stevens,J. Am. Chem. Soc.,123, 3205 (2001).

    Article  CAS  Google Scholar 

  15. R. W. Carpick, D. Y. Sasaki, and A. R. Burns,Langmuir,16, 1270 (2000).

    Article  CAS  Google Scholar 

  16. S. Kolusheva, O. Molt, M. Herm, T. Schrader, and R. Jelinek,J. Am. Chem. Soc.,127, 10000 (2005).

    Article  CAS  Google Scholar 

  17. J.-M. Kim, J.-S. Lee, H. Choi, D. Sohn, and D. J. Ahn,Macromolecules,38, 9366 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Man Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JS., Lee, S. & Kim, JM. Fluorogenic conjugated polymer fibers from amphiphilic diacetylene supramolecules. Macromol. Res. 16, 73–75 (2008). https://doi.org/10.1007/BF03218965

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03218965

Keywords

Navigation