Skip to main content
Log in

The central concept for chitin catabolic cascade in marine bacterium,Vibrios

  • Review
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The enzymatic hydrolysis of chitin has been studied for almost a century, and early work established that at least two enzymes are required, a chitinase that mainly yields the disaccharideN,N’-diacetylchitobiose, or (GlcNAc)2, and a “chitobiase”, orβ-N-acetylglucosaminidase, which gives the final product GlcNAc. This pathway has not been completely identified but has remained the central concept for the chitin catabolism through the 20th century1 including in marine bacteria.2 However, the chitin catabolic cascade is quite complex, as described in this review. This report describes three biologically functional genes involved in the chitin catabolic cascade ofVibrios in an attempt to better understand the metabolic pathway of chitin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. A. Wood and S. T. Kellog,Methods Enzymol.,161, (1988).

  2. R. W. Soto-Gil and J. W. Zyskind, inChitin, Chitosan and Related Enzymes, J. P. Zikakis, Ed., Academic Press, Orlando, FL., 1984.

    Google Scholar 

  3. B. L. Bassler, P. J. Gibbons, C. Yu, and S. Roseman,J. Biol. Chem.,266, 24268 (1991).

    CAS  Google Scholar 

  4. B. L. Bassler, C. Yu, Y. C. Lee, and S. Roseman,J. Biol. Chem.,266, 24276 (1991).

    CAS  Google Scholar 

  5. B. L. Bassler and S. Roseman,J. Biol. Chem.,268, 9405 (1993).

    Google Scholar 

  6. C. Yu, A. M. Lee, B. L. Bassler, and S. Roseman,J. Biol. Chem.,266, 24260 (1991).

    CAS  Google Scholar 

  7. N. O. Keyhani and S. Roseman,Biochim. Biophys. Acta,1473, 108 (1999).

    Article  CAS  Google Scholar 

  8. N. O. Keyhani, L.-X. Wang, Y. C. Lee, and S. Roseman,J. Biol. Chem.,271, 33409 (1996).

    Article  CAS  Google Scholar 

  9. N. O. Keyhani and S. Roseman,J. Biol. Chem.,271, 33414 (1996).

    Article  CAS  Google Scholar 

  10. N. O. Keyhani and S. Roseman,J. Biol. Chem.,271, 33425 (1996).

    Article  CAS  Google Scholar 

  11. E. Chitlaru and S. Roseman,J. Biol. Chem.,271, 33433 (1996).

    Article  CAS  Google Scholar 

  12. C. L. Bouma and S. Roseman,J. Biol. Chem.,271, 33457 (1996).

    Article  CAS  Google Scholar 

  13. N. O. Keyhani, X. Li, and S. Roseman,J. Biol. Chem.,275, 33068 (2000).

    Article  CAS  Google Scholar 

  14. J. G. Voet and R. H. Abeles,J. Biol. Chem.,245, 1020 (1970).

    CAS  Google Scholar 

  15. J. J. Mieyal and R. H. Abeles, inThe Enzymes, P. D. Boyer, Ed., Academic Press, New York, 1972, Vol. 7, pp. 515–532.

    Google Scholar 

  16. M. Kitaoka, T. Sasaki, and H. Taniguchi,Biosci. Biotech. Biochem.,56, 652 (1992).

    Article  CAS  Google Scholar 

  17. J. K. Park, N. O. Keyhani, and S. Roseman,J. Biol. Chem.,275, 33077 (2000).

    Article  CAS  Google Scholar 

  18. I. H. Segel,Biochemical Calculations, 2nd Ed., John Wiley & Sons, New York, 1976.

    Google Scholar 

  19. W. Kundig, S. Ghosh, and S. Roseman,Proc. Natl. Acad. Sci., U. S. A.,52, 1067 (1964).

    Article  CAS  Google Scholar 

  20. P. W. Postma, J. W. Lengeler, and G. R. Jacobson,Microbiol. Rev.,57, 543 (1993).

    CAS  Google Scholar 

  21. S. Roseman,J. Biol. Chem.,226, 115 (1957).

    CAS  Google Scholar 

  22. E. A. Davidson, H. J. Blumenthal, and S. Roseman,J. Biol. Chem.,226, 125 (1957).

    CAS  Google Scholar 

  23. D. G. Comb and S. Roseman,J. Biol. Chem.,232, 807 (1958).

    CAS  Google Scholar 

  24. J. Plumbridge,Mol. Microbiol.,3, 505 (1989).

    Article  CAS  Google Scholar 

  25. J. Plumbridge,Mol. Microbiol.,5, 2053 (1991).

    Article  CAS  Google Scholar 

  26. J. Plumbridge,Nucleic Acids Res.,29, 1 (2001).

    Article  Google Scholar 

  27. J. L. Reissig,J. Biol. Chem.,219, 753 (1956).

    CAS  Google Scholar 

  28. A. Fernandez-Sorensen and D. M. Carlson,J. Biol. Chem.,246, 3485 (1971).

    CAS  Google Scholar 

  29. D. M. Carlson,Methods Enzymol.,8, 179 (1966).

    Article  CAS  Google Scholar 

  30. C. Asensio and M. Ruiz-Amil,Methods Enzymol.,9, 421 (1966).

    Article  Google Scholar 

  31. J. K. Park, L.-X. Wang, and S. Roseman,J. Biol. Chem.,277, 15573 (2002).

    Article  CAS  Google Scholar 

  32. J. K. Park, L.-X. Wang, H. V. Patel, and S. Roseman,J. Biol. Chem.,277, 29555 (2002).

    Article  CAS  Google Scholar 

  33. D. P. Dharmawardhana, B. E. Ellis, and J. E. Carlson,Plant Physiol. (Bethesda),107, 331 (1995).

    Article  CAS  Google Scholar 

  34. L. A. Castle, K. D. Smith, and R. O. Morris,J. Bacteriol.,174, 1478 (1992).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Kweon Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, BO., Roseman, S. & Park, J.K. The central concept for chitin catabolic cascade in marine bacterium,Vibrios . Macromol. Res. 16, 1–5 (2008). https://doi.org/10.1007/BF03218953

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03218953

Keywords

Navigation