Skip to main content
Log in

Surface modification of magnetites using maltotrionic acid and folic acid for molecular imaging

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Highly hydrophilic, uniform, superparamagnetic and nontoxic maltotrionic acid (MA)-coated magnetite nano-particles (MAM) were prepared and characterized by TEM, DLS, XRD and VSM. MA was used to improve the biocompatibility, monodispersity and non-specific intracellular uptake of nanoparticles. Folic acid (FA) was subsequently conjugated to the MAM to preferentially target KB cells (cancer cells) that have folate receptors expressed on their surfaces and to facilitate nanoparticles in their transit across the cell membrane. Finally, fluorescence isothiocyanate (FITC) was added to the nanoparticles to visualize the nanoparticle internalization into KB cells. After the cells were cultured in a media containing the MAM and MAM-folate conjugate (FAMAM), the results of fluorescence and confocal microscopy showed that both types of nanoparticles were internalized into the cells. Nevertheless, the amount of FAMAM uptake was higher than that of MAM. This result indicated that nanoparticles modified with MA and FA could be used to facilitate the nanoparticle uptake to specific KB cells (cancer cells) for molecular imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Halbreich, J. Roger, J. N. Pons, M. F. Da Silva, E Hasmonay, M. Roudier, M. Boynard, C. Sestier, A. Amri, D. Geldwerth, B. Fertil, J. C. Bacri, and D. Sabolovic, inScientific and Clinical Applications of Magnetic Carriers, U. Hafeli, W. Schutt, J. Teller, and M. Zborowski, Eds., Plenum Press, New York, 1997, pp 399–417.

    Google Scholar 

  2. A. Halbreich, J. Roger, J. N. Pons, D. Geldwerth, M. F. Da Silva, M. Roudier, and J. C. Bacri,Biochimie,80, 379 (1998).

    Article  CAS  Google Scholar 

  3. L. A. Perrin-Cocon, P. N. Marche, and C. L. Villiers,Biochem. J.,338, 123 (1999).

    Article  CAS  Google Scholar 

  4. S. H. Koenig and K. E. Kellar,Acad. Radiol.,3, 273 (1996).

    Article  Google Scholar 

  5. N. Kohler, C. Sun, J. Wang, and M. Zhang,Langmuir,21, 8858 (2005).

    Article  CAS  Google Scholar 

  6. J. Roger, J. N. Pons, R. Massart, A. Halbreich, and J. C. Bacri,Eur. Phys. J. Appl. Phys.,5, 321 (1999).

    Article  CAS  Google Scholar 

  7. P. Moroz, S. K. Jones, and B. N. Gray,Int. J. Hyperthermia,18, 267 (2002).

    Article  CAS  Google Scholar 

  8. F. Bertorelle, C. Wilhelm, J. Roger, F. Gazeau, C. Menager, and V. Cabuil,Langmuir,22, 5385 (2006).

    Article  CAS  Google Scholar 

  9. Y. Zhang and J. Zhang,J. Colloid Interface Sci.,283, 352 (2005).

    Article  CAS  Google Scholar 

  10. N. Sadeghiani, L. S. Barbosa, L. P. Silva, R. B. Azevedo, P. C. Morais, and Z. G. M. Lacava,J. Magn. Magn. Mater.,289, 466 (2005).

    Article  CAS  Google Scholar 

  11. A. K. Gupta and M. Gupta,Biomaterials,26, 1565 (2005).

    Article  CAS  Google Scholar 

  12. Y. Zhang, N. Kohler, and M. Zhang,Biomaterials,23, 1553 (2002).

    Article  CAS  Google Scholar 

  13. L. M. Lacava, Z. G. M. Lacava, M. F. Da Silva, O. Silva, S. B. Chaves, R. B. Azevedo, F. Pelegrini, C. Gansau, N. Buske, D. Sabolovic, and P. C. Morais,Biophys. J.,80, 2483 (2001).

    Article  CAS  Google Scholar 

  14. L. Babes, B. Denzoit, G. Tanguy, J. J. Le Jeune, and P. Jallet,J. Colloid Interface Sci.,212, 474 (1999).

    Article  CAS  Google Scholar 

  15. J. Dietvorst, J. Londesborough, and H. Y. Steensma,Yeast,22, 775 (2005).

    Article  CAS  Google Scholar 

  16. F. Bealin-Kelly, C. T. Kelly, and W. M. Fogarty,Biochem. Enzymol.,1, 149 (1990).

    Google Scholar 

  17. M. Nakano, H. Chaen, T. Sugimoto, and T. Miyake, US Patent 5739024 (1998).

  18. S. D. Weitman, R. H. Lark, L. R. Coney, D. W. Fort, V. Frasca, V. R Zurawski, and B. A. Kamen,Cancer Res.,52, 3396 (1992).

    CAS  Google Scholar 

  19. P. A. Dresco, V. S. Zaitsev, R. J. Gambino, and B. Chu,Langmuir,15, 1945 (1999).

    Article  CAS  Google Scholar 

  20. Y. K. Park, Y. H. Park, B. A. Shin, E. S. Choi, Y. R. Park, and T. Akaike,J. Control. Release,69, 97 (2000).

    Article  CAS  Google Scholar 

  21. H. Choi, S. R. Choi, R. Zhou, H. F. Kung, and I.-W. Chen,Acad. Radiol.,11, 996 (2004).

    Article  Google Scholar 

  22. X. Liu, H. Liu, J. Xing, Y. Guan, Z. Ma, G. Shan, and C. Yang,Chaina Particuology,2, 76 (2003).

    Article  Google Scholar 

  23. A. Guinier,X-ray diffraction in crystals, imperfect crystals, and amorphous bodies, Sanfrancisco, Freeman, 1963, p. 378.

    Google Scholar 

  24. M. A. Zhiya, G. Yueping, and H. Liu,J. Polym. Sci., Polym. Chem.,43, 3433 (2005).

    Article  Google Scholar 

  25. K. I. Shingel,Carbohydr. Res.,337, 1445 (2002).

    Article  CAS  Google Scholar 

  26. M. Yamaura, R. L. Camilo, L. C. Sampaio, M. A. Macedo, M. Nakamura, and H. E. Toma,J. Magn. Magn. Mater.,279, 210 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inn-Kyu Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selim, K.M.K., Lee, JH., Kim, SJ. et al. Surface modification of magnetites using maltotrionic acid and folic acid for molecular imaging. Macromol. Res. 14, 646–653 (2006). https://doi.org/10.1007/BF03218738

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03218738

Keywords

Navigation