Skip to main content
Log in

Population response of pale chub (Zacco platypus) exposed to wastewater effluents in Gap Stream

  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

The effects of effluent from a municipal wastewater treatment plant (MWTP) on population level responses of the pale chub (Zacco platypus), as sentinel species, were evaluated at four sites of the Gap Stream (GS) in June 2007. At GS 7.2 and GS 2.7, downstream of the municipal wastewater outfall, the response patterns of the pale chub population in the age at maturation were not changed; mean age, fecundity, and condition factor were increased; age distribution was shifted to older; growth rate was increased/or not changed; and the egg size and population size were decreased compared with reference site (GS 26.6). These observed responses of the pale chub population matched well with the characteristics expected from a fish population experiencing chronic recruitment failure, except for the decreased egg size due to the elevation in nutrients and pollutants by treated sewage discharge. The observed response pattern at the downstream sites might be caused by the deterioration of the spawning or nursery habitat, or by the contaminant-induced chronic spawning failures. Thus, these results suggest that the effluent of the MWTP might impact on the fish population structure and health status of pale chub population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, S. M. Establishing causality between environmental stressors and effects on aquatic ecosystems.Human and Ecological Risk Assessment 9, 17–35 (2003).

    Article  CAS  Google Scholar 

  2. Foster, E. P.et al. Plasma androgen correlation, EROD induction, reduced condition factor, and the occurrence of organochlorine pollutants in reproductively immature white sturgeon (Acipenser transmontanus) from the Columbia River, USA.Archives of Environmental Contamination and Toxicology 41, 182–191 (2001).

    Article  PubMed  CAS  Google Scholar 

  3. Karr, J. R. Assessment of biotic integrity using fish communities.Fisheries 6, 21–27 (1981).

    Article  Google Scholar 

  4. Munkittrick, K. R.et al. Development of methods for effects-driven cumulative effects assessment using fish populations: Moose River project, Society of Environmental Toxicology and Chemistry, Pensacola, FL, USA. 236 pp (2000).

    Google Scholar 

  5. Barbour, M. T., Gerritsen, J., Snyder, B. D. & Stribling, J. B. Rapid bioassessment protocols for use in streams and wadeable rivers: Periphyton, benthic macroinvertebrates and fish. 2nd Ed, EPA 841-B-99-002 (US EPA Office of Water, Washington, D.C., USA., 1999).

    Google Scholar 

  6. Plafkin, J. L., Barbour, M. T., Porter, K. D., Gross, S. K. & Hughes, R. M. Rapid bioassessment protocols for use in streams and rivers: Benthic macroinvertebrate and fish. EPA/444/4-89-001 (Office of water regulations and standards. US EPA. Washington, D.C., USA., 1989).

    Google Scholar 

  7. Ohio EPA. Biological criteria for the protection of aquatic life. Vol. III, Standardized biological field sampling and laboratory method for assessing fish and macroinvertebrate communities. U.S.A. (1989).

  8. Ganasan, V. & Hughes, R. M. Application of an index of biological integrity (IBI) to fish assemblages of the rivers Khan and Kshipra (Madhya Pradesh), India.Freshwater Biology 40, 367–383 (1998).

    Article  Google Scholar 

  9. Adams, S. M., Greeley, M. S. & Ryon, M. G.Evaluating effects of contaminants on fish health at multiple levels of biological organization: Extrapolating from lower to higher levels.Human and Ecological Risk Assessment 6, 15–27 (2000).

    Article  CAS  Google Scholar 

  10. Moyle, P. B. & Randall, P. J. Evaluating the biotic integrity of watersheds in the Sierra Nevada, California.Conservation Biology 12, 1318–1326 (1998).

    Article  Google Scholar 

  11. An, K. G., Kim, D. S., Kong, D. S. & Kim, S. D. Integrative assessments of a temperate stream based on a multimetric determination of biological integrity, physical habitat evaluations, and toxicity tests.B Environ Contam Tox 73, 471–478 (2004).

    Article  CAS  Google Scholar 

  12. Yeom, D. H., Lee, S. A., Kang, G. S., Seo, J. & Lee, S. K. Stressor identification and health assessment of fish exposed to wastewater effluents in Miho Stream, South Korea.Chmosphere 67, 2282–2292 (2007).

    Article  CAS  Google Scholar 

  13. Adams, S. M., Shugart, L. R., Southworth, G. R. & Hinton, D. E. inBiomarkers of Environmental Contamination (eds McCarthy, J. F. & Shugart, L. R.) 333-353 (Lewis Pub., 1990).

  14. Munkittrick, K. R. & Dixon, D. G. An holistic approach to ecosystem health assessment using fish population characteristics. inEnvironmental Bioassay Techniques and Their Application. (eds Munawar, M., Dixon, G., Mayfield, C. I., Reynoldson, T. & Sadar. M. H.) 188/189, 122-135 (Hydrobiologia, 1989).

  15. Cury, P. & Roy, C. Optimal environmental window and pelagic fish recruitment success in upwelling areas.Canadian Journal of Fisheries and Aquatic Sciences 46, 670–680 (1989).

    Article  Google Scholar 

  16. Gray, M. A., Curry, A. R. & Munkittrick, K. R. Nonlethal sampling methods for assessing environmental impacts using a small-bodied sentinel fish species.Water Qual Res J Can 37, 195–211 (2002).

    CAS  Google Scholar 

  17. Gibbons, W. N. & Munkittrick, K. R. A sentinel monitoring framework for identifying fish population response to industrial discharges.Journal of Aquatic Ecosystem Health 3, 227–237 (1994).

    Article  Google Scholar 

  18. Environment Canada. Pulp and paper technical guidance for aquatic environmental effects monitoring. EEM/1998/1. Gatineau, Quebec, Canada (1998).

  19. Environment Canada. Metal mining guidance document for aquatic environmental effects monitoring. Gatineau, Quebec, Canada (2004).

  20. Adams, S. M.et al. Downstream gradients in bioindicator responses: Point source contaminant effects on fish health.Can J Fish Aquat Sci 53, 2177–2187 (1996).

    Google Scholar 

  21. Larsson, J. D. G., Hallman, H., & Forlin, L. More male fish embryos near a pulp mill.Environmental Toxicology and Chemistry 19, 2911–2917 (2000).

    Article  CAS  Google Scholar 

  22. Barnes, M. A., Power, G. & Downer, R. G. H. Stressrelated changes in Lake Whitefish (Coregonus clupeaformis) associated with a hydroelectric control structure.Canadian Journal of Fisheries and Aquatic Sciences 41, 1528–1533 (1984).

    Article  CAS  Google Scholar 

  23. Adams, S. M., Crumby, W. D., Greeley, M. S. & Shugart, L. R. Responses of fish populations and communities to pulp mill effluents: A holistic assessment.Ecotoxicology and Environmental Safety 24, 347–360 (1992).

    Article  PubMed  CAS  Google Scholar 

  24. Lemly, A. D. Metabolic stress during winter increases the toxicity of selenium to fish.Aquatic Toxicology 27, 133–158 (1993).

    Article  CAS  Google Scholar 

  25. Dennis, T. E. & Bulger, A. J. Condition factor and whole-body sodium concentrations in a freshwater fish: evidence for acidification stress and possible ionoregulatory over-compensation.Water, Air & Soil Pollution 85, 377–382 (1995).

    Article  CAS  Google Scholar 

  26. Larsen, D. A., Beckman, B. R. & Dickhoff, W. W. The effect of low temperature and fasting during the winter on metabolic stores and endocrine physiology (Insulin, Insulin-like Growth factor-I, and Thyroxine) of Coho Salmon,Oncorhynchus kisutch. General and Comparative Endocrinology 123, 308–323 (2001).

    Article  CAS  Google Scholar 

  27. Anna, F., János, S. & András, S. Age- and size-specific patterns of heavy metals in the organs of freshwater fishAbramis brama L. populating a low-contaminated site.Water Research 37, 959–964 (2003).

    Article  Google Scholar 

  28. Otto, D. M. E. & Moon, T. W. Endogenous antioxidant systems of two teleost fish, the rainbow trout and the black bullhead, and the effect of age.Fish Physiology and Biochemistry 15, 349–358 (1996).

    Article  CAS  Google Scholar 

  29. Kirby, M. F.et al. Hepatic EROD activity in flounder (Platichthys flesus) as an indicator of contaminant exposure in English estuaries.Marine Pollution Bulletin 38, 676–686 (1999).

    Article  CAS  Google Scholar 

  30. Huuskonen, S. & Lindstrom-Seppa, P. Hepatic cytochrome P4501A and other biotransformation activities in perch (Perca fluviatilis): The effects of unbleached pulp mill effluents.Aquatic Toxicology 31, 27–41 (1995).

    Article  CAS  Google Scholar 

  31. Yeom, D. H., Chung, K. H., Kim, Y. H. & Adams, S. M. Ecological health and causal assessment of fish communities experiencing multiple stressors in Gap Stream, South Korea.Toxicology and Environmental Health Sciences 1, 97–108 (2009).

    Article  Google Scholar 

  32. Rudolf, S. S. W. & Or, Y. Y. Bioenergetics, growth and reproduction of amphipods are affected by moderately low oxygen regimes.Mar Ecol Prog Ser 297, 215–223 (2005).

    Article  Google Scholar 

  33. Xing, Y. C.et al. Growth and diets ofZacco platypus distributed in Beijing.Acta Zoologica Sinica 53, 982–993 (2007).

    Google Scholar 

  34. Cury, P. & Roy, C. Optimal environmental window and pelagic fish recruitment success in upwelling areas.Canadian Journal of Fisheries and Aquatic Sciences 46, 670–680 (1989).

    Article  Google Scholar 

  35. Mertz, G. & Myers, R. A. Match/mismatch predictions of spawning duration versus recruitment variability.Fisheries Oceanography 3, 236–245 (1994).

    Article  Google Scholar 

  36. Munkittrick, K. R. & Dixon, D. G. Growth, fecundity and energy stores of white sucker (Catostomus commersoni) from lakes containing elevated levels of copper and zinc.Can J Fish Aquat Sci 45, 1355–1365 (1988).

    Article  CAS  Google Scholar 

  37. Fitzgerald, D. G., Lanno, R. P. & Dixon, D. G. A comparison of a sentinel species evaluation using creek chub (Semotilus atromaculatus) to a fish community evaluation for the initial identification of environmental stressors in small streams.Ecotoxicology 8, 33–48 (1999).

    Article  Google Scholar 

  38. Adams, S. M. & Breck, J. E. inMethods for Fish Biology (eds Schreck, C. B. & Moyle, P. B.) 389–415 (American Fisheries Society, Bethesda, Maryland, 1990).

    Google Scholar 

  39. Beggs, G. L. & Gunn, J. M. Response of lake trout (Salvelinus namaycush) and brook trout (S. fontinalis) to surface water acidification in Ontario.Wat Air Soil Pollut 30, 711–717 (1986).

    Article  CAS  Google Scholar 

  40. Black, J. J., Evans, E. D., Harshbarger, J. C. & Ziegel, R. F. Epizootic neoplasm in fishes from a lake polluted by copper mining wastes.J Nat Cancer Inst 69, 915–926 (1985).

    Google Scholar 

  41. Munkittrick, K. R. & Leatherland, J. F. Abnormal pituitary-gonad function in feral populations of goldfish suffering epizootics of an ulcerative disease.J Fish Dis 7, 433–447 (1984).

    Article  Google Scholar 

  42. Evans, D. O. An overview of the ecology of the lake whitefish,Corgeonus clupeaformis (Mitchill) in Lake Simcoe, Ontario with special reference to water quality and introduction of the rainbow smelt,Osmerus mordax (Mitchill).Ont Min Nat Res File Rept 132 pp (1978).

  43. Daejeon Municipal Wastewater Treatment Plant, www. djsiseol.or.kr (2009).

  44. Kim, I. S.et al. inIllustrated Book of Korea Fishes (Kyo-Hak Pub Co, Seoul, 2005).

    Google Scholar 

  45. Casselman, J. M. Age and growth assessment of fish from their calcified structures-Techniques and tools.NOAA Tech Rep NMFS 8, 1–17 (1983).

    Google Scholar 

  46. Regier, H. A. Validation of the scale method for estimating age and growth of bluegills.Trans Am Fish Soc 91, 362–374 (1962).

    Article  Google Scholar 

  47. Bagenal, T. B. & Braum, E. inMethods for Assessment of Fish Production in Fresh Waters (ed Bagenal, T. B.) 165–201 (Blackwell, Oxford, 1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Hyuk Yeom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JH., Yeom, DH. Population response of pale chub (Zacco platypus) exposed to wastewater effluents in Gap Stream. Toxicol. Environ. Health. Sci. 1, 169–175 (2009). https://doi.org/10.1007/BF03216481

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03216481

Keywords

Navigation