Skip to main content
Log in

Bile acid sequestrants: mechanisms of action on bile acid and cholesterol metabolism

  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Summary

Interruption of the enterohepatic circulation of bile acids by cholestyramine or colestipol influences the hepatic metabolism of cholesterol in many ways. The synthesis of bile acids is increased, as reflected by a several-fold increase in the activity of the cholesterol 7a hydroxylase, the rate-determining enzyme in bile acid synthesis. The increased metabolism of cholesterol to bile acids causes an enhanced demand of cholesterol in the hepatocytes, which respond with both new synthesis of cholesterol, as reflected in a several-fold increase of the HMG-CoA reductase activity, and increased expression of LDL receptors. As a consequence, the plasma level of LDL-cholesterol is lowered. The hepatic secretion rate of VLDL particles is increased. Cholestyramine therapy does not affect the output of biliary lipids or the cholesterol saturation of bile, indicating that treatment with bile acid sequestrants should not be associated with any increased risk of gallstone formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grundy SM (1978) Cholesterol metabolism in man. West J Med 128: 13–25

    PubMed  CAS  Google Scholar 

  2. Angelin B, Einarsson K (1985) Regulation of HMG CoA reductase in human liver. In: Preiss B (ed) Regulation of HMG CoA reductase. Academic Press, New York, pp 281–320

    Google Scholar 

  3. Angelin B, Einarsson K (1986) Bile acids and lipoprotein metabolism. Atheroscler Rev 15: 41–66

    Google Scholar 

  4. Brown MS, Goldstein JL (1986) A receptor-mediated pathway for cholesterol homeostasis. Science 232: 34–47

    Article  PubMed  CAS  Google Scholar 

  5. Havel RJ (1986) Functional activities of hepatic lipoprotein receptors. Annu Rev Physiol 48: 119–134

    Article  PubMed  CAS  Google Scholar 

  6. Krag E, Phillips SF (1974) Active and passive bile acid absorption in man. Perfusion studies of the ileum and jejunum. J Clin Invest 53: 1686–1694

    Article  PubMed  CAS  Google Scholar 

  7. Angelin B, Einarsson K, Hellström K (1976) Evidence for the absorption of bile acids in the proximal small intestine for normo- and hyperlipidemic subjects. Gut 17: 420–425

    Article  PubMed  CAS  Google Scholar 

  8. Angelin B, Björkhem I, Einarsson K, Ewerth S (1982) Hepatic uptake of bile acids in man: fasting and postprandial concentrations of individual bile acids in portal venous and systemic blood serum. J Clin Invest 70: 724–731

    Article  PubMed  CAS  Google Scholar 

  9. Carey MC, Cahalane MJ (1988) Enterohepatic circulation. In: Arias IM, Jakoby WB, Popper H, Schacter G, Shafritz DA (eds) The liver: biology and pathobiology. Raven Press, New York, pp573–616

    Google Scholar 

  10. Hofmann AF (1989) The enterohepatic circulation of bile acids. In: Handbook of Physiology: The gastrointestinal system. American Physiological Society, Bethesda, Md, pp 567–596

    Google Scholar 

  11. Dowling RH, Mack E, Small DM (1970) Effects of controlled interruption of the enterohepatic circulation of bile salts by biliary diversion and by biliary resection on bile salt secretion, synthesis, and pool size in the rhesus monkey. J Clin Invest 49: 232–242

    Article  PubMed  CAS  Google Scholar 

  12. Grundy SM, Ahrens EH Jr, Salen G (1971) Interruption of the enterohepatic circulation of bile acids in man; comparative effects of cholestyramine and ileal exclusion on cholesterol metabolism. J Lab Clin Med 78: 94–121

    PubMed  CAS  Google Scholar 

  13. Johns WH, Bates TR (1969) Quantification of the binding tendencies of cholestyramine: I. Effect of structure and added electrolytes on the binding of unconjugated and conjugated bile-salt and anions. J Pharm Sci 58: 179–183

    Article  PubMed  CAS  Google Scholar 

  14. Thale M, Faergeman O (1978) Binding of bile acids to anion-exchanging drugs in vitro. Scand J Gastroenterol 13: 353–356

    Article  PubMed  CAS  Google Scholar 

  15. Angelin B, Björkhem I, Einarsson K, Ewerth S (1982) Cholestyramine treatment reduces postprandial but not fasting serum bile acid levels in human. Gastroenterology 83: 1097–1101

    PubMed  CAS  Google Scholar 

  16. Einarsson K, Hellström K, Kallner M (1974) The effect of cholestyramine on the elimination of cholesterol as bile acids in patients with hyperlipoproteinaemia type II and IV. Eur J Clin Invest 4: 405–410

    PubMed  CAS  Google Scholar 

  17. Andersén E (1979) The effect of cholestyramine on bile acid kinetics in healthy controls. Scand J Gastroenterol 14: 657–662

    Article  PubMed  Google Scholar 

  18. Einarsson K, Ahlberg J, Angelin B, Holmström B (1979) Evidence for the presence of different hepatic cholesterol precursor pools in man. In: Preisig R, Bircher J (eds). The liver: quantitative aspects of structure and function. Editio Cantor, Aulendorf, pp 233–238

    Google Scholar 

  19. Björkhem I (1985) Mechanism of bile acid biosynthesis inmammalian liver. In: Danielsson H, Sjövall J (eds). New comprehensive biochemistry. Elsevier Scientific, Amsterdam, pp231–278

    Google Scholar 

  20. Einarsson K, Angelin B, Ewerth S, Nilsell K, Björkhem I (1986) Bile acid synthesis in man: assay of hepatic microsomal cholesterol 7α-hydroxylase activity by isotope dilution-mass spectrometry. J Lipid Res 27: 82–88

    PubMed  CAS  Google Scholar 

  21. Reihnér E, Björkhem I, Angelin B, Ewerth S, Einarsson K (1989) Bile acid synthesis in man: regulation of hepatic microsomal cholesterol 7α-hydroxylase activity. Gastroenterology 97: 1498–1505

    PubMed  Google Scholar 

  22. Einarsson K, Reihnér E, Björkhem I (1989) On the saturation of the cholesterol 7α-hydroxylase in human liver microsomes. J Lipid Res 30: 1033–1039

    PubMed  Google Scholar 

  23. Björkhem I, Reihnér E, Angelin B, Ewerth S, Einarsson K (1987) On the possible use of the serum level of 7α-hydroxy-cholesterol as a marker for the activity of the cholesterol 7α-hydroxylase in humans. J Lipid Res 28: 889–894

    PubMed  Google Scholar 

  24. Angelin B (1989) Lipoprotein metabolism — an introductory overview. Treatment of hyperlipidemia. Uppsala National Board of Health and Welfare 3: 7–16

    Google Scholar 

  25. Angelin B, Einarsson K, Liljeqvist L, Nilsell K, Heller RA (1984) 3-Hydroxy-3-methylglutaryl CoA reductase in human liver microsomes: active and inactive forms and cross-reactivity with antibody against rat liver enzyme. J Lipid Res 25: 1159–1166

    PubMed  CAS  Google Scholar 

  26. Reihnér E, Angelin B, Rudling M, Ewerth S, Björkhem I, Einarsson K (1991) Regulation of hepatic cholesterol metabolism in man: stimulatory effects of cholestyramine on HMG CoA reductase activity and low density lipoprotein receptor expression in gallstone patients. J Lipid Res (in press)

  27. Rudling MJ, Peterson CO (1985) A simple binding assay for the determination of low-density lipoprotein receptors in cell homogenates. Biochim Biophys Acta 833: 359–365

    PubMed  CAS  Google Scholar 

  28. Spady DK, Turley SD, Dietschy JM (1985) Rates of low density lipoprotein uptake and cholesterol synthesis are regulated independently in the liver. J Lipid Res 26: 465–472

    PubMed  CAS  Google Scholar 

  29. Shepherd J, Packard CJ, Bicker S, Lawrie TDV, Morgan HG (1980) Cholestyramine promotes receptor-mediated low-density lipoprotein catabolism. N Engl J Med 302: 1219–1222

    Article  PubMed  CAS  Google Scholar 

  30. Packard CJ, Shepherd J (1982) The hepatobiliary axis and lipoprotein metabolism: effects of bile acid sequestrants and ileal bypass surgery. J Lipid Res 23: 1081–1098

    PubMed  CAS  Google Scholar 

  31. Ericsson S, Berglund L, Frostegård J, Einarsson K, Angelin B (1990) Effects of cholestyramine on low density lipoprotein metabolism in normal man. (Submitted for publication)

  32. Witztum JL, Schonfeld G, Weidman SW (1976) The effects of colestipol on the metabolism of very-low-density lipoproteins in man. J Lab Clin Med 88: 1008–1018

    PubMed  CAS  Google Scholar 

  33. Angelin B, Leijd B, Hultcrantz R, Einarsson K (1990) Increased turnover of very low density lipoprotein triglyceride during treatment with cholestyramine in familial hypercholesterolaemia. J Intern Med 227: 201–206

    Article  PubMed  CAS  Google Scholar 

  34. Nestel PJ, Grundy SM (1976) Changes in plasma triglyceride metabolism during withdrawal of bile. Metabolism 25: 1259–1267

    Article  PubMed  CAS  Google Scholar 

  35. Angelin B, Einarsson K, Hellström K, Leijd B (1978) Effects of cholestyramine and chenodeoxycholic acid on the metabolism of endogenous triglyceride in hyperlipoproteinemia. J Lipid Res 19: 1017–1024

    PubMed  CAS  Google Scholar 

  36. Beil U, Crouse JR, Einarsson K, Grundy SM (1982) Effects of interruption of the enterohepatic circulation of bile acids on the transport of very low density lipoprotein triglycerides. Metabolism 31: 438–444

    Article  PubMed  CAS  Google Scholar 

  37. Carella M, Ericsson S, Del Piano C, Angelin B, Einarsson K (1990) Effect of cholestyramine treatment on biliary lipid secretion rates in normolipidaemic males. J Intern Med (in press)

  38. Garbutt JT, Kenney TJ (1972) Effect of cholestyramine on bile acid metabolism in normal man. J Clin Invest 51: 2781–2789

    Article  PubMed  CAS  Google Scholar 

  39. Grundy SM, Mok HYI (1977) Colestipol, clofibrate, and phytosterols in combined therapy of hyperlipidemia. J Lab Clin Med 89: 354–366

    PubMed  CAS  Google Scholar 

  40. Einarsson K, Angelin B (1986) Hyperlipoproteinemia, hypolipidemic treatment and gallstone disease. Atheroscler Rev 15: 67–97

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Einarsson, K., Ericsson, S., Ewerth, S. et al. Bile acid sequestrants: mechanisms of action on bile acid and cholesterol metabolism. Eur J Clin Pharmacol 40 (Suppl 1), S53–S58 (1991). https://doi.org/10.1007/BF03216291

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03216291

Key words

Navigation