Skip to main content
Log in

Importance ofeps genes fromBacillus subtilis in biofilm formation and swarming

  • Original Article
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

Unicellular organisms naturally form multicellular communities, differentiate into specialized cells, and synchronize their behaviour under certain conditions. Swarming, defined as a movement of a large mass of bacteria on solid surfaces, is recognized as a preliminary step in the formation of biofilms. The main aim of this work was to study the role of a group of genes involved in exopolysaccharide biosynthesis during pellicle formation and swarming inBacillus subtilis strain 168. To assess the role of particular proteins encoded by the group ofepsI-epsO genes that form theeps operon, we constructed a series of insertional mutants. The results obtained showed that mutations inepsJ-epsN, but not in the last gene of theeps operon (epsO), have a severe effect on pellicle formation under all tested conditions. Moreover, the inactivation of 5 out of the 6 genes analysed caused total inhibition of swarming in strain 168 (that does not produce surfactin) on LB medium. Following restoration of thesfp gene (required for production of surfactin, which is essential for swarming of the wild-type bacteria), thesfp + strains defective ineps genes (exceptepsO) generated significantly different patterns during swarming on synthetic B medium, as compared to the parental strain 168sfp +.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blair KM, Turner L, Winkelman JT, Berg HC, Kearns DB, 2008. Amolecular clutch disables flagella in theBacillus subtilis biofilm. Science 320: 1636–1638.

    Article  CAS  PubMed  Google Scholar 

  • Branda SS, González-Pastor JE, Ben-Yehuda SE, Kolter R, Losick R, 2001. Fruiting body formation byBacillus subtilis. Proc Natl Acad Sci USA 98: 11621–11626.

    Article  CAS  PubMed  Google Scholar 

  • Branda SS, González-Pastor JE, Dervyn E, Ehrlich SD, Losick R, Kolter R, 2004. Genes involved in formation of structured multicellular communities byBacillus subtilis. J Bacteriol 186: 3970–3979.

    Article  CAS  PubMed  Google Scholar 

  • Branda SS, Chu F, Kearns DB, Losic R, Kotler R, 2006. A major protein component of theBacillus subtilis biofilm matrix. Mol Microbiol 59: 1229–38.

    Article  CAS  PubMed  Google Scholar 

  • Bowden MG, Kaplan HP, 1998. TheMyxococcus xanthus lipopolysaccharide O-antigen is required for social motility and multicellular development. Mol Microbiol 30: 275–284.

    Article  CAS  PubMed  Google Scholar 

  • Brown II, Häse CC, 2001. Flagellum- independent surface migration ofVibrio cholerae andEscherichia coli. J Bacteriol 183: 3784–3790.

    Article  CAS  PubMed  Google Scholar 

  • Chambers SP, Prior SE, Barstow DA, Minton NP, 1988. The pMTLnic cloning vectors. I. Improved pUC polylinker regions to facilitate the use of sonicated DNA for nucleotide sequencing. Gene 68:139–149.

    Article  CAS  PubMed  Google Scholar 

  • Chu F, Kearns DB, Branda SS, Kolter R, Losick R, 2006. Targets of the master regulator of biofilm formation inBacillus subtilis. Mol Microbiol 59: 1216–1228.

    Article  CAS  PubMed  Google Scholar 

  • Cosby WM, Vollenbroich D, Lee OH, Zuber P, 1998. Alteredsrf expression inBacillus subtilis resulting from changes in culture pH is dependent on the Spo0K oligopeptide permease and the ComQX system of extracellular control. J Bacteriol 180: 1438–1445.

    CAS  PubMed  Google Scholar 

  • Gygi D, Rahman MM, Lai HC, Carlson R, Guard-Petter J, Hughes C, 1995. A cell-surface polysaccharide that facilitates rapid population migration by differentiated swarm cells ofProteus mirabilis. Mol Microbiol 17: 1167–1175.

    Article  CAS  PubMed  Google Scholar 

  • Hamon MA, Stanley DA, Britton RA, Grossman AD, Lazazzera AB 2004. Identification of AbrB-regulated genes involved in biofilm formation byBacillus subtilis. Mol Microbiol 52:847–860.

    Article  CAS  PubMed  Google Scholar 

  • Hamze K, Julkowska D, Autret S, Hinc K, Nagorska K, Sekowska A, et al. 2009. Identification of genes required for different stages of dendritic swarming inBacillus subtilis, with a novel role forphrC. Microbiology 155: 398–412.

    Article  CAS  PubMed  Google Scholar 

  • Harshey RM, 2003. Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol 57:249–273.

    Article  CAS  PubMed  Google Scholar 

  • Inoue T, Shingaki R, Hirose S, Waki K, Mori H, Fukui K, 2007. Genome-wide screening of genes required for swarming motility inEscherichia coli K-12. J Bacteriol 189: 950–957.

    Article  CAS  PubMed  Google Scholar 

  • Ireton K, Rudner DZ, Siranosian KJ, Grossman AD, 1993. Integration of multiple developmental signals inBacillus subtilis through the Spo0A transcription factor. Genes Dev 7: 283–294.

    Article  CAS  PubMed  Google Scholar 

  • Izquierdo L, Abitiu N, Coderch N, Hita B, Merino S, Gavin R, et al. 2002. The inner-core lipopolysaccharide biosyntheticwaaE gene: function and genetic distribution among some Enterobacteriaceae. Microbiology 148: 3485–3496.

    CAS  PubMed  Google Scholar 

  • Julkowska D, Obuchowski M, Holland IB, Seror SJ, 2004. Branched swarming patterns on a synthetic medium formed by wild-typeBacillus subtilis strain 3610: detection of different cellular morphologies and constellations of cells as the complex architecture develops. Microbiology 150: 1839–1849.

    Article  CAS  PubMed  Google Scholar 

  • Julkowska D, Obuchowski M, Holland IB, Seror SJ, 2005. Comparative analysis of the development of swarming communities ofBacillus subtilis 168 and a natural wild type: critical effects of surfactin and the composition of the medium. J Bacteriol 187: 65–76.

    Article  CAS  PubMed  Google Scholar 

  • Kearns DB, Losick R, 2003. Swarming motility in undomesticatedBacillus subtilis. Mol Microbiol 49: 581–590.

    Article  CAS  PubMed  Google Scholar 

  • Kearns DB, Chu F, Branda SS, Kolter R, Losick R, 2005. A master regulator for biofilm formation byBacillus subtilis. Mol. Microbiol 55: 739–749.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, 2007.Bacillus subtilis pellicle formation proceeds through genetically defined morphological changes. J Bacteriol 189: 4920–4931.

    Article  CAS  PubMed  Google Scholar 

  • Leclère V, Marti R, Béchet M, Fickers P, Jacques P, 2006. The lipopeptides mycosubtilin and surfactin enhance spreading ofBacillus subtilis strains by their surface-active properties. Arch Microbiol 186: 475–483.

    Article  PubMed  CAS  Google Scholar 

  • Lombardía E, Rovetto AJ, Arabolaza AL, Grau RR, 2006. A LuxS-dependent cell-to-cell language regulates social behavior and development inBacillus subtilis. J Bacteriol 188: 4442–4452.

    Article  PubMed  CAS  Google Scholar 

  • Lu A, Cho K, Black WP, Duan XY, Lux R, Yang Z, et al. 2005. Exopolysaccharide biosynthesis genes required for social motility inMyxococcus xanthus. Mol Microbiol 55: 206–20.

    Article  CAS  PubMed  Google Scholar 

  • Morikawa M, 2006. Beneficial biofilm formation by industrial bacteriaBacillus subtilis and related species. J Biosci Bioeng 101:1–8.

    Article  CAS  PubMed  Google Scholar 

  • Nadell CD, Xavier JB, Foster KR, 2009. The sociobiology of biofilms. FEMS Microbiol Rev 33: 206–224.

    Article  CAS  PubMed  Google Scholar 

  • Nagórska K, Hinc K, Strauch MA, Obuchowski M, 2008. Influence of the sigmaB stress factor and yxaB, the gene for a putative exopolysaccharide synthase under sigmaB Control, on biofilm formation. J Bacteriol 190: 3546–3556.

    Article  PubMed  CAS  Google Scholar 

  • Nakano MM, Corbell N, Besson J, Zuber P, 1992. Isolation and characterization ofsfp: a gene that functions in the production of the lipopeptide biosurfactant, surfactin, inBacillus subtilis. Mol Gen Genet 232: 313–321.

    CAS  PubMed  Google Scholar 

  • Quadri LE, Weinreb PH, Lei M, Nakano MM, Zuber P, Walsh CT, 1998. Characterization of Sfp, aBacillus subtilis phosphopantetheinyl transferase for peptidyl carrier protein domains in peptide synthetases. Biochemistry 37: 1585–1595.

    Article  CAS  PubMed  Google Scholar 

  • Rahman MM, Guard-Petter J, Asokan K, Hughes C, Carlson RW, 1999. The structure of the colony migration factor from pathogenicProteus mirabilis: A capsular polysaccharide that facilitates swarming. J Biol Chem 274: 22993–22998.

    Article  CAS  PubMed  Google Scholar 

  • Ren D, Bedzyk AL, Setlow P, Thomas SM, Ye RW, Wood TK, 2004. Geneexpression inBacillus subtilis surface biofilms withandwithout sporulationandthe importance ofyveR for biofilm maintenance. Biotechnol Bioeng 86: 344–364.

    Article  CAS  PubMed  Google Scholar 

  • Shapiro JA, 1998. Thinking about bacterial populations as multicellular organisms. Annu Rev Microbiol 52: 81–104.

    Article  CAS  PubMed  Google Scholar 

  • Sharma M, Atend SK, 2002. Swarming: A coordinated bacterial activity. Current Science 83: 707–715.

    CAS  Google Scholar 

  • Toguchi A, Siano M, Burkart M, Harshey RM, 2000. Genetics of swarming motility inSalmonella enterica serovar.typhimurium: critical role for lipopolysaccharide. J Bacteriol 182: 6308–6321.

    Article  CAS  PubMed  Google Scholar 

  • Vagner V, Dervyn E, Ehrlich SD, 1998. Avector for systematic gene inactivation inBacillus subtilis. Microbiology 144: 3097–3104.

    Article  CAS  PubMed  Google Scholar 

  • Vlamakis H, Aguilar C, Losick R, Kolter R, 2008. Control of cell fate by the formation of an architecturally complex bacterial community. Genes Dev 22: 945–953.

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Frye JG, McClelland M, Harshey RM, 2004. Gene expression patterns during swarming inSalmonella typhimurium: genes specific to surface growth and putative new motility and pathogenicity genes. Mol Microbiol 52: 169–187.

    Article  CAS  PubMed  Google Scholar 

  • Watnick P, Kolter R, 2000. Biofilm, city of microbes. J Bacteriol 182: 2675–2679.

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Jiang Y, Kaiser D, Mark A, 2007. Social interactions in myxobacterial swarming. PLoS Computional Biology. 3: 2546–2558.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagórska, K., Ostrowski, A., Hinc, K. et al. Importance ofeps genes fromBacillus subtilis in biofilm formation and swarming. J Appl Genet 51, 369–381 (2010). https://doi.org/10.1007/BF03208867

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03208867

Keywords

Navigation