Skip to main content
Log in

Genetic characterisation of a domestic dogCanis familiaris breed endemic to South African rural areas

  • Published:
Acta Theriologica Aims and scope Submit manuscript

Abstract

Allozyme electrophoresis (horizontal starch gel and PAGE) and histochemical staining techniques were used to study the genetic composition of an endemic southern African domestic dogCanis familiaris Linnaeus, 1758, the Africanis breed. Genetic differentiation was analysed at 21 protein-coding loci. The results were compared to those for three other populations/breeds: representatives of established Western breeds, crossbred dogs of Western descent from rural areas in South Africa, and indigenous Saluki dogs from the Middle East. Nine polymorphic loci were found (Ak-1,-2, Ck, Per, Hb, Po-A-1 to-3 andPo-Tf). Two unique alleles at theCk andPo-A-2 loci separated the Africanis breed from the other groups. There were also significant differences between Africanis and the other breeds in pair-wise comparisons of allelic frequencies at polymorphic loci. An assignment test, fixation index values, gene flow and genetic distance values indicated a closer genetic association between the Africanis and Saluki breeds than with dogs of Western origin. This finding supports archaeological evidence that the endemic Africanis breed was introduced from the Middle East into Africa thousands of years ago, and not through later western influences. The average heterozygosity ranged from 0.106–0.15, with least heterozygosity in the Africanis and most in the rural crossbred group. The percentage of polymorphic loci, the mean number of alleles per locus (biologically more significant than heterozygosity), and conformation of genotypes to Hardy-Weinberg proportions showed no evidence of recent loss of genetic diversity in Africanis. Genetic differentiation and support of archaeological evidence by genetics indicate that the endemic southern African domestic dog breed is unique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boessneck J. 1988. Die Tierwelt des alten Ägypten. Beck, München: 1–197.

    Google Scholar 

  • Chappel C. A. 1968. A strandloper skeleton found at Cape St. Francis. Diastema 2: 37–39.

    CAS  PubMed  Google Scholar 

  • Clutton-Brock J. 1995. Origin of the dog: domestication and early history. [In: The domestic dog, its evolution, behaviour and interactions with people. J. Serpell, ed]. Cambridge University Press, Cambridge: 7–20.

    Google Scholar 

  • Corbett L. 1995. The dingo in Australia and Asia. Comstock/Cornell, Ithaca, New York: 1–200.

    Google Scholar 

  • Cornuet J. M., Piry S., Luikart G., Estoup A. and Solignac M. 1999. New methods employing mutinous genotypes to select or exclude populations as origins of individuals. Genetics 153: 1989–2000.

    CAS  PubMed  Google Scholar 

  • Fisher R. A., Putt W. and Hackel E. 1976. An investigation of the products of 53 gene loci in three species of wild Canidae:Canis lupus, C. Latrans andC. familiaris. Biochemical Genetics 14: 963–974.

    Article  CAS  PubMed  Google Scholar 

  • Gahne B. O., Juneja R. K. and Grolmus J. 1977. Horizontal polyacrylamide gradient gel electrophoresis for the simultaneous phenotyping of transferrin, post-transferrin, albumin and post-albumin in the blood plasma of cattle. Animal Blood Groups and Biochemical Genetics 8: 127–137.

    Article  CAS  PubMed  Google Scholar 

  • Goncharenko G. G., Padutov V. E. and Siliin A. E. 1992. Population structure, gene diversity and differentiation in a natural population of ceder pines (Pinus subsect cembae, Pinaceae) in the USSR. Plant Systematics and Evolution 182: 121–134.

    Article  CAS  Google Scholar 

  • Grobler J. P. and Matlala J. M. 2002. Regional genetic variability among South African vervet monkeyChlorocebus aethiops populations. Acta Theriologica 47: 113–124.

    Google Scholar 

  • Grobler J. P., Taylor P., Pretorius D. M. and Anderson P. C. 1999. Fluctuating asymmetry and allozyme variation in an isolated springbok (Antidorcas marsupialis) population from the Chelmsford Nature Reserve. Acta Theriologica 44: 183–193.

    Google Scholar 

  • Grobler J. P. and Van der Bank F. H. 1994. Isozyme variation in South African impala (Aepyceros melampus) populations under different management regimes. South African Journal of Wildlife Research 24: 89–94.

    Google Scholar 

  • Hillis D. M., Moritz C. and Mable B. K. 1996. Molecular systematics (2nd edition). Sinauer Associates, Sunderland, Massachusetts, USA: 1–665.

    Google Scholar 

  • Hoffman M. A. 1984. Predynastic cultural ecology and patterns of settlement in Upper Egypt as viewed from Hierakonpolis. [In: Origin and early development of food producing cultures in north-eastern Africa. L. Krzyniak and M. Kobusiewicz, eds]. Polish Academy of Sciences, Poznań: 235–245.

    Google Scholar 

  • Hood G. 2000. POPTOOLS version 2.1. Software for analysis of ecological models, version 2.1.

  • Juneja R. K., Arnold I. C. J., Gahne B. and Bouw J. 1987. Parentage testing of dogs using variants of blood proteins: description of five new plasma protein polymorphisms. Animal Genetics 18: 297–310.

    Article  CAS  PubMed  Google Scholar 

  • Kennedy P. K., Kennedy M. L., Clarkson P. L. and Liepins I. S. 1991. Genetic variability in natural populations of the grey wolf,Canis lupus. Canadian Journal of Zoology 69: 1183–1188.

    Article  Google Scholar 

  • Lehman N., Eisenhawer A., Hamsen K., Mech L. D., Peterson R. O., Gogan P. J. P. and Wayne R. K. 1991. Introgression of coyote mitochondrial DNA into sympatric North American gray wolf populations. Evolution 45: 104–119.

    Article  Google Scholar 

  • Leberg P. L. 1992. Effects of population bottlenecks on genetic diversity as measured by allozyme electrophoresis. Evolution 46: 477–494.

    Article  Google Scholar 

  • Markert C. L. and Faulhaber I. 1965. Lactate dehydrogenase pattens of fish. Journal of Experimental Zoology 159: 319–332.

    Article  CAS  PubMed  Google Scholar 

  • Nei M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590.

    CAS  PubMed  Google Scholar 

  • Nei M. 1986. Definition and estimation of fixation indices. Evolution 40: 643–645.

    Article  Google Scholar 

  • Olson S. J. 1985. Origins of the domestic dog. University of Arizona Press, Tucson, Arizona: 1–118.

    Google Scholar 

  • Olson S. J. and Olson J. W. 1977. The Chinese wolf ancestor of the New World dogs. Science 197: 533–535.

    Article  Google Scholar 

  • Ota T. 1993. DISPAN: genetic distance and phylogenetic analysis. Pennsylvania State University, USA.

    Google Scholar 

  • Plug I. 1996. Domestic animals during the Early Iron Age in southern Africa. [In: Aspects of African archaeology. Pwiti G. and Soper R., eds]. University of Zimbabwe Publications, Harare: 21–26.

    Google Scholar 

  • Raymond M. and Rousset F. 1997. GENEPOP (Version 3.1b). Population genetics software for exact tests and ecumenicism.

  • Ridgway G., Sherburne S. W. and Lewis R. D. 1970. Polymorphism in the esterases of Atlantic herring. Transactions of the American Fisheries Society 99: 147–151.

    Article  CAS  Google Scholar 

  • Roubet C. and Carter P. L. 1984. La domestication dans le Magreb: état de la question. [In: Origin and early development of food producing cultures in north-eastern Africa. L. Krzyniak and M. Kobusiewicz, eds]. Polish Academy of Sciences, Poznań: 437–452.

    Google Scholar 

  • Swofford D. L., Black W. L. and Selander R. B. 1997. BIOSYS-2. Department of Microbiology, Colorado University.

    Google Scholar 

  • Takahata N. 1982. Gene identity and genetic differentiation of populations in the finite island model. Genetics 104: 497–512.

    Google Scholar 

  • Tanabe Y., Ôta K., Ito S., Hashimoto Y., Sung Y. Y., Ryu J. K. and Faruque M. O. 1991. Biochemical-genetic relationships among Asian and European dogs and the ancestry of the Japanese native dog. Journal of Animal Breeding and Genetics 108: 455–478.

    Article  Google Scholar 

  • Van der Bank F. H. 2002. A review of gene nomenclature for enzyme-coding loci generally used in allozyme studies. Trends in Comparative Biochemistry and Physiology 9: 197–203.

    Google Scholar 

  • Van Schalkwyk L. 1994. Wosi: an early iron age village in the lower Thukela Basin, Natal. Natal Museum Journal of Humanities 6: 65–117.

    Google Scholar 

  • Vilà C., Maldonado J. E. and Wayne R. K. 1999. Phylogenetic relationships, evolution and genetic diversity in the domestic dog. Journal of Heredity 90: 71–77.

    Article  PubMed  Google Scholar 

  • Vilà C., Savolainen P., Maldonado J. E., Amorim I. R., Rice J. E., Honeycutt R. L., Crandall K. A., Lundeberg J. and Wayne R. K. 1997. Multiple and ancient origins of the domestic dog. Science 276: 1687–1689.

    Article  PubMed  Google Scholar 

  • Voigt E. A. 1983. Mapungubwe — an archaeozoological interpretation of an Iron Age community. Transvaal Museum, Pretoria: 1–204.

    Google Scholar 

  • Von Petters V. 1934. Beitrag zur Kenntnis der Südaafrikanischen Hauskunde. Zeitschrift für Säugetierkunde 9: 142–163.

    Google Scholar 

  • Wayne R. K. 1986. Cranial morphology of domestic and wild canids: the influence of development on morphological change. Evolution 40: 243–261.

    Article  Google Scholar 

  • Wayne R. K. 1993. Molecular evolution of the dog family. Trends in Genetics 9: 218–224.

    Article  CAS  PubMed  Google Scholar 

  • Whitt G. S. 1970. Developmental genetics of the lactate dehydrogenase isozymes of fish. Journal of Experimental Biology 175: 1–35.

    CAS  Google Scholar 

  • Wright S. 1978. Evolution and the genetics of populations, Vol. 4. Variability within and among natural populations. University of Chicago, Chicago: 1–439.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Grobler.

Additional information

Editors were Zdzisław Pucek and Krzysztof Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greyling, L.M., Grobler, P.J., Van der Bank, H.F. et al. Genetic characterisation of a domestic dogCanis familiaris breed endemic to South African rural areas. Acta Theriol 49, 369–382 (2004). https://doi.org/10.1007/BF03192535

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03192535

Key words

Navigation