Skip to main content
Log in

Effects of roxithromycin on the pharmacokinetics of loratadine after oral and intravenous administration of loratadine in rats

  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Summary

The present study aimed to investigate the effect of roxithromycin on the oral and intravenous pharmacokinetics of loratadine in rats. The pharmacokinetic parameters of loratadine were measured after an orally (4 mg/kg) and intravenously (1 mg/kg) administration of loratadine in the presence or absence of roxithromycin (2.0 or 5.0 mg/kg). Compared with the control (given loratadine alone), the area under the plasma concentration-time curve (AUC) was significantly (2.0 mg/kg,P<0.05; 5.0 mg/kg,P<0.01) increased by (76.8–119.2)% in the presence of roxithromycin after oral administration of loratadine. The peak plasma concentration (C max) was significantly (2.0 mg/kg,P<0.05; 5.0 mg/kg,P<0.01) increased by (45.1–97.6)% in the presence of roxithromycin after oral administration of loratadine. Consequently, the relative bioavailability (R.B.) of loratadine was increased by 1.77-to 2.19-fold. In contrast, roxithromycin had no effect on any pharmacokinetic parameters of loratadine given intravenously. It suggested that roxithromycin may improve the oral bioavailability of loratadine by reducing first-pass metabolism of loratadine most likely mediated by P-glycoprotein (P-gp) and/or cytochrome P450 (CYP) 3A4 in the intestine and/or liver. In conclusion, the presence of roxithromycin significantly enhanced the bioavailability of loratadine in rats, it may be due to inhibition of both CYP 3A4-mediated metabolism and P-gp in the intestine and/or liver by the presence of roxithromycin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Markcham A., Faulds D. (1994): Roxithromycin. An update of its antimicrobial activity, pharmacoinetic properties and therapeutic use. Drugs, 48, 297–326.

    Article  Google Scholar 

  2. Young R.A., Gonzalez J.P., Sorkin E.M. (1989): Roxithromycin. A review of its antibacterial activity, pharmacokinetic properties and clinical efficacy. Drugs, 37, 8–41.

    Article  CAS  PubMed  Google Scholar 

  3. Ledirac N., de Sousa G., Fontaine F., Agouridas C., Gugenheim J., Lorenzon G., Rahmani R. (2000): Effects of macrolide antibiotics on CYP3A expression in human and rat hepatocytes: interspecies differences in response to troleandomycin. Drug Metab. Dispos., 28, 1391–1393.

    CAS  PubMed  Google Scholar 

  4. Yamazaki H., Shimada T. (1989): Comparative studies of in vitro inhibition of cytochrome P450 3A4-dependent testosterone 6beta-hydroxylation by roxithromycin and its metabolites, troleandomycin, and erythromycin. Drug Metab. Dispos., 26, 1053–1057.

    Google Scholar 

  5. Benet L.Z., Cummins C.L., Wu C.Y. (2003): Transporterenzyme interactions: implications for predicting drug-drug interactions from in vitro data. Curr. Drug Metab., 4, 393–398.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang Y., Guo X., Lin E.T., Benet L.Z. (1998): Overlapping substrate specificities of cyt-ochrome P450 3A and P-glycoprotein for a novel cysteine protease inhibitor. Drug Metab. Dispos., 26, 360–366.

    CAS  PubMed  Google Scholar 

  7. Pachot J.I., Botham R.P., Haegele K.D., Hwang K. (2003): Experimental estimation of the role of P-Glycoprotein in the pharmacokinetic behaviour of telithromycin, a novel ketolide, in comparison with roxithromycin and other macrolides using the Caco-2 cell model. J. Pharm. Pharm. Sci., 6, 1–12.

    CAS  PubMed  Google Scholar 

  8. Bradley C.M., Nicholson A.N. (1987): Studies on the central effects of the H1-antagonist, loratadine. Eur. J. Clin. Pharmacol., 32, 419–421.

    Article  CAS  PubMed  Google Scholar 

  9. Ramaekers J.G., Uiterwijk M.M., O’Hanlon J.F. (1992): Effects of loratadine and cetirizine on actual driving and psychometric test performance, and EEG during d-riving. Eur. J. Clin. Pharmacol., 42, 363–369.

    CAS  PubMed  Google Scholar 

  10. Kay G.G., Berman B., Mockoviak S.H., Morris C.E., Reeves D., Starbuck V., Sukenik E., Harris A.G. (1997): Initial and steady-state effects of diphenhydramine and loratadine on sedation, cognition, mood, and psychomotor performance. Arch. Intern. Med., 157, 2350–2356.

    Article  CAS  PubMed  Google Scholar 

  11. Philpot E.E. (2000): Safety of second generation antihistamines. Allerg. Asthma. Proc., 21, 15–19.

    Article  CAS  Google Scholar 

  12. Prenner B.M., Capano D., Harris A.G. (2000): Efficacy and tolerability of loratadine versus fexofenadine in the treatment of seasonal allergic rhinitis: adouble-blind comparison with crossover treatment of nonresponders. Clin. Ther., 22, 760–769.

    Article  CAS  PubMed  Google Scholar 

  13. Clissold S.P., Sorkin E.M., Goa K.L. (1989): Loratadine, a preliminary review of its pharmacodynamic properties and therapeutic efficacy. Drugs, 37, 42–57.

    Article  CAS  PubMed  Google Scholar 

  14. Hilbert J., Radwanski E., Weglein R., Luc V., Perentesis G., Symchowicz S., Zampaglione N. (1987): Pharmacokinetics and dose proportionality of loratadine. J. Clin. Pharmacol., 27, 694–698.

    CAS  PubMed  Google Scholar 

  15. Kreutner W., Hey J.A., Anthes J., Barnett A., Young S., Tozzi S. (2000): Preclinical pharmacology of desloratadine, a selective and nonsedating histamine H1 receptor antagonist. 1st communication: receptor selectivity, antihistaminic activity, and antiallergenic effects. Arzneimittelforschung, 50 345–352.

    CAS  PubMed  Google Scholar 

  16. Henz B.M. (2001): The pharmacologic profile of desloratadine: a review. Allergy, 56 Suppl 65, 7–13.

    Article  PubMed  Google Scholar 

  17. Yumibe N., Huie K., Chen K.J., Snow M., Clement R.P., Cayen M.N. (1996): Identification of human liver cytochrome P450 enzymes that metabolize the nonsedating antihistamine loratadine. Formation of descarboethoxyloratadine by CYP3A4 and CYP2D6. Biochem. Pharmacol., 51, 165–172.

    Article  CAS  PubMed  Google Scholar 

  18. Wang E.J., Casciano C.N., Clement R.P., Johnson W.W. (2001): Evaluation of the interaction of loratadine and desloratadine with P-glycoprotein. Drug Metab. Dispos., 29, 1080–1083.

    CAS  PubMed  Google Scholar 

  19. Wacher V.J., Silverman J.A., Zhang Y., Benet L.Z. (1998): Role of P-glycoprotein and cytochrome P450 3A in limiting oral absorption of peptides and peptidomimetics. J. Pharm. Sci., 87, 1322–1330.

    Article  CAS  PubMed  Google Scholar 

  20. Ito K., Kusuhara H., Sugiyama Y. (1999): Effects of intestinal CYP3A4 and P-glycoprotein on oral drug absorption; theoretical approach. Pharm. Res., 16, 225–231.

    Article  CAS  PubMed  Google Scholar 

  21. Pichard L., Gillet G., Fabre I., Dalet-Beluche I., Bonfils C., Thenot J.P., Maurel P. (1990): Identification of the rabbit and human cytochromes P-450IIIA as the major enzymes involved in the N-demethylation of diltiazem. Drug Metab. Dispos., 18, 711–719.

    CAS  PubMed  Google Scholar 

  22. Carr R.A., Edmonds A., Shi H., Locke C.S. Gustavson L.E., Craft J.C., Harris S.I., Palmer R. (1998): Steady-state pharmacokinetics and electrocardiographic pharmacodynamics of clarithromycin and loratadine after individual or concomitant administration. Antimicrob. Agents Chemother, 42, 1176–1180.

    CAS  PubMed  Google Scholar 

  23. Kosoglou T., Salfi M., Lim J.M., Batra V.K., Cayen M.N., Affrime M.B. (2000): Evaluation of the pharmacokinetics and electrocardiographic pharmacodynamics of loratadine with concomitant administration of ketoconazole or cimetidine. Br. J. Clin. Pharmacol., 50, 581–589.

    Article  CAS  PubMed  Google Scholar 

  24. Yin O.Q., Shi X., Chow M.S. (2003): Reliable and specific high-performance liquid chromatographic method for simultaneous determination of loratadine and its metabolite in human plasma. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci., 796, 165–172.

    Article  CAS  PubMed  Google Scholar 

  25. Amini H., Ahmadiani A. (2004): Rapid determination of loratadine in small volume plasma samples by high-performance liquid chromatography with fluorescence detection. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 809, 227–230.

    Article  CAS  PubMed  Google Scholar 

  26. Cummins C.L., Jacobsen W., Benet L.Z. (2002): Unmasking the dynamic interplay between intestinal P-glycoprotein and CYP3A4. J. Pharmacol. Exp. Ther., 300, 1036–1045.

    Article  CAS  PubMed  Google Scholar 

  27. Wolozin B., Kellman W., Ruosseau P., Celesia G.G., Siegel G. (2000): Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors. Arch. Neurol., 10, 1439–1443.

    Article  Google Scholar 

  28. Kaminsky L.S., Fasco M.J. (1991): Small intestinal cytochromes P450. Crit. Rev. Toxocol., 21, 407–422.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Kim, CS., Yang, JY. et al. Effects of roxithromycin on the pharmacokinetics of loratadine after oral and intravenous administration of loratadine in rats. Eur. J. Drug Metabol. Pharmacokinet. 33, 231–236 (2008). https://doi.org/10.1007/BF03190877

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03190877

Key words

Navigation