Skip to main content
Log in

Influence of rifampicin on the toxicity and the analgesic effect of acetaminophen

  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Summary

The influence of rifampicin on the toxicity, analgesic effect and pharmacokinetics of acetaminophen was studied in male albino mice. Repeated administration of rifampicin (50 mg/kg i.p. daily for 6 days) shortened hexobarbital sleeping time and increased liver weight, microsomal cytochrome P-450 and heme contents, NADPH-cytochrome c reductase and ethylmorphine-N-demethylase activities. Aniline hydroxylase activity was decreased and glucuronidation ofp-nitrophenol was unaffected. Rifampicin pretreatment changed neither the LD50 of acetaminophen nor the hepatic glutathione level nor the glutathione depletion provoked by the toxic dose of acetaminophen (737 mg/kg p.o.). This suggests that rifampicin has no influence on the amount of acetaminophen toxic metabolites formed in the liver. Rifampicin decreased the acetaminophen analgesic effect in mice. Rifampicin decreased the Cmax, the half-time, the MRT and the AUC of acetaminophen and accelerated its clearance. The plasma concentration of acetaminophen glucuronide and acetaminophen sulfate was increased. It is assumed that the most probable mechanism by which rifampicin decreases acetaminophen analgesia is the accelerated acetaminophen elimination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mitchell J.R., Jollow D.J., Potter W.Z., Davies D.C., Gillette J.R., Brodie B.B. (1973): Acetaminophen-induced hepatic necrosis. I. Role of drug metabolism. J. Pharmacol. Exp. Ther., 187, 185–194.

    CAS  PubMed  Google Scholar 

  2. Potter W.Z., Davis D.C., Mitchell J.R., Jollow D.J., Gillette J.R., Brodie B.B. (1973): Acetaminophen-induced hepatic necrosis. III. Cytochrome P-450-mediated covalent binding in vitro. J. Pharmacol. Exp. Ther., 187, 203–210.

    CAS  PubMed  Google Scholar 

  3. Corcoran G.B., Mitchell J.R. (1982): Evidence for redox cycling of acetaminophen and its reactive metabolite by endogenous microsomal systems. Adv. Exp. Med. Biol., 136, 1085–1098.

    Google Scholar 

  4. Mitchell J.R., Jollow D.J., Potter W.Z., Gillette J.R., Brodie B.B. (1973): Acetaminophen-induced hepatic necrosis. IV. Protective role of glutathione. J. Pharmacol. Exp. Ther., 187, 211–217.

    CAS  PubMed  Google Scholar 

  5. Pessayre D., Mazel P. (1976): Induction and inhibition of hepatic drug metabolizing enzymes by rifampin. Biochem. Pharmacol., 25, 943–949.

    Article  CAS  PubMed  Google Scholar 

  6. Van de Broek J.M., Wolde-Kraamwinkel H.C., Breimer D.D. (1980): The effect of rifampicin on the oxidative metabolism of xenobiotics in rat, hamster, guinea-pig and mouse, with emphasis on the NMRI mouse. In: Gustafsson J-A. et al. (eds), Biochemical and Biophysical Regulation of Cytochrome P-450. Amsterdam, Elsevier/North-Holland Biomedical Press, pp. 235–238.

    Google Scholar 

  7. Lange R., Balny C., Maurel P. (1984): Inductive and repressive effects of rifampicin on rabbit liver microsomal cytochrome P-450. Biochem. Pharmacol., 33, 2771–2776.

    Article  CAS  PubMed  Google Scholar 

  8. Barry M., Feely J. (1990). Enzyme induction and inhibition. Pharmacol. Ther., 48, 71–94.

    Article  PubMed  Google Scholar 

  9. Guengerich F.P. (1982): Microsomal enzymes involved in toxicology. Analysis and separation. In: Hayes A.W. (ed.), Principles and Methods of Toxicology. New York, Raven Press, pp. 609–634.

    Google Scholar 

  10. Omura T., Sato R. (1964): The carbon monoxide binding of liver microsomes. I. Evidence for its hemoprotein nature. J. Biol. Chem., 239, 2370–2378.

    CAS  PubMed  Google Scholar 

  11. Paul K.G., Teorell H., Akeson A. (1953): The molar light absorption of pyridine ferroprotoporphyrin (pyridine haemochromogen). Acta Chem. Scand., 7, 1284–1287.

    Article  CAS  Google Scholar 

  12. Vermilon J., Coon M. (1978): Purified liver microsomal NADPH-cytochrome P-450 reductase. J. Biol. Chem., 253, 2694–2704.

    Google Scholar 

  13. Mazel P. (1971): Experiments illustrating drug metabolism. Determination of microsomal aniline hydroxylase. In: La Du B.N., Mandel H.G., Way E. (eds.) Fundamentals of Drug Metabolism and Drug Disposition. Baltimore, The Willkins Co. pp. 546–582.

    Google Scholar 

  14. Nash T. (1953): The colorimetric estimation of formaldehyde by means of Hantzsch reaction. J. Biol. Chem., 55, 416–421.

    CAS  Google Scholar 

  15. Frei J. (1970): Multiplicity and specificity of UDP-glucuronyl-transferase. I. Effect of divalent cations and EDTA on the activity of UDP-glucuronyltransferase assayed with bilirubin. 4-methylumbilliferone and p-nitrophenol. Enzym. Biol. Clin., 11, 385–401.

    CAS  Google Scholar 

  16. Hissin P., Hilf R. (1976): A fluorimetric method for determination of oxidized and reduced glutathione in tissues. Anal. Biochem., 74, 214–226.

    Article  CAS  PubMed  Google Scholar 

  17. Singh P., Junnarkar A., Rao C., Varm R., Shridhar D. (1983): Acetic acid and phenylquinone writhing test: a critical study in mice. Meth. Find. Exp. Clin. Pharmacol., 5, 601–606.

    CAS  Google Scholar 

  18. Bhargava V.O., Emodi S., Hirate J. (1988): Quantitation of acetaminophen and its metabolites in rat plasma after a toxic dose. J. Chromatogr., 426, 212–215.

    Article  CAS  PubMed  Google Scholar 

  19. Mihailova D., Nachev I., Prodanova K. (1985): Programs for automated pharmacokinetic analysis with the help of personal computer (method of residuals). Farmacija, 35, 15–22.

    Google Scholar 

  20. Prescott L.F., Critchley J.A., Balali-Mood M., Pentland B. (1981): Effects of microsomal enzyme induction on paracetamol metabolism in man. Br. J. Clin. Pharmacol., 12, 149–153.

    CAS  PubMed  Google Scholar 

  21. Gregus Z., Madhu C., Klaassen C.D. (1988): Species variation in toxication and detoxication of acetaminophen in vivo. A comparative study of biliary and urinary excretion of acetaminophen metabolites. J. Pharmacol. Exp. Ther., 244, 91–99.

    CAS  PubMed  Google Scholar 

  22. Bock K.W., Wiltfang J., Blume R., Ullrich D., Bircher J. (1987): Paracetamol as a test drug to determine glucuronide formation in man. Effects of inducers and smoking. Eur. J. Clin. Pharmacol., 31, 677–683.

    Article  CAS  PubMed  Google Scholar 

  23. Roy Chowdhury J., Roy Chowdhury N., Falany C.N., Tephly T.R., Arias I.M. (1986): Isolation and characterization of multiple forms of rat liver UDP-glucuronate glucuronosyl-transferase. Biochem. J., 233, 827–837.

    CAS  PubMed  Google Scholar 

  24. Adachi Y., Nanno T., Yamashita M., Ueshima S., Yamamoto T. (1985): Induction of rat liver bilirubin-conjugating enzymes and glutathione S-transferase by rifampin. Gastroenterol. Jpn., 20, 104–110.

    CAS  PubMed  Google Scholar 

  25. Clissold S.P. (1986): Paracetamol and phenacetin. Drugs, 32, 46–59.

    Article  PubMed  Google Scholar 

  26. Granados-Sato V., Flores-Murrieta F.J., Lopez-Munoz F.J., Salazar L.A., Villarreal J.E., Castaneda-Hernandez G. (1992): Relationship between paracetamol plasma levels and its analgesic effect in the rat. J. Pharm. Pharmacol., 44, 741–744.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dimova, S., Stoytchev, T. Influence of rifampicin on the toxicity and the analgesic effect of acetaminophen. Eur. J. Drug Metab. Pharmacokinet. 19, 311–317 (1994). https://doi.org/10.1007/BF03188857

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03188857

Keywords

Navigation