Skip to main content
Log in

Collapse characteristics of hydroformed tubes

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Tube hydroforming technology (THF) has been extensively applied to auto-body structural members such as the engine cradle and side member in order to meet the urgent need for vehicle weight and cost reduction as well as high quality for collision accidents. In this paper, the mechanical properties for hydroformed tubes with various bulging strians under the plane strain mode are experimentally investigated. Axial compression tests for hydroformed tubes are performed to investigate the collapse load and collapse absorption capacity through the collapse load-displacement curves. Moreover, the collapse absorption capacities are compared and discussed among as-received, hydroformed, and press formed tubes. Results demonstrate that the hydroformed tubes show higher collapse absorption capability in comparison with the as-received tube and the press formed tube because of its high yield strength due to strain hardening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Fuchizawa and H. Takeyama,J. Jpn. Soc. Precision Eng. 45, 106 (1979).

    Google Scholar 

  2. M. Koc and T. Altan,J. Mat. Proc. Tech. 108, 384 (2001).

    Article  CAS  Google Scholar 

  3. F. Dohmann and C. Hartl,lJ. Mat. Proc. Tech. 71, 174 (1997).

    Article  Google Scholar 

  4. Y. S. Kim, H. S. Cho, C. D. Park and W. J. Choi,J. Kor. Soc. Tech. Plasticity 9, 604 (2000).

    Google Scholar 

  5. S. T. Kim, S. W. Im, T. G. Lee, and Y. S. Kim,J. Kor. Soc. Tech. Plasticity 9, 35 (2000).

    Google Scholar 

  6. N. Asnafi and A. Skogsgardh,Mater. Sci. Eng. A 279, 95 (2000).

    Article  Google Scholar 

  7. R. H. Wagoner and J. V. Laukonis,Metall. Trans. A 14, 1487 (1983).

    Article  Google Scholar 

  8. J. V. hLaukonis and R. H. Wagoner,Metall. Trans. A 16, 421 (1985).

    Article  Google Scholar 

  9. A. B. Doucet and R. H. Wagoner,Metall. Trans. A 20, 1483 (1989).

    Article  Google Scholar 

  10. S. R. Reid,Int. J. Mech. Sci. 35, 1035 (1993).

    Article  Google Scholar 

  11. T. Wierzbicki and W. Abramowicz,J. Appl. Mech. 50, 727 (1983).

    Article  MATH  Google Scholar 

  12. F. Bleich,Buckling Strength of Metal Structures, McGraw-Hill Book Co., New York (1952).

    Google Scholar 

  13. J. M. Alexander,Quart. J. Mech. Appl. Math. 13, 10 (1960).

    Article  MATH  MathSciNet  Google Scholar 

  14. W. Abramowiez and N. Jones,Int. J. Impact Eng. 4, 243 (1986).

    Article  Google Scholar 

  15. C. H. Jeong,Master Thesis, Yonsei University, Seoul, Korea (1998)

  16. C. W. Kim, B. K. Han and C. J. Won,J. Kor. Soc. Auto. Eng. 6, 119 (1998).

    Google Scholar 

  17. S. R. Guillow, G. Lu, and R. H. Grzebieta,Int. J. Mech. Sci. 43, 2103 (2001).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, YS., Lee, YM., Kim, C. et al. Collapse characteristics of hydroformed tubes. Met. Mater. Int. 8, 359–365 (2002). https://doi.org/10.1007/BF03186108

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03186108

Keywords

Navigation