Skip to main content
Log in

Efficient approximation method for constructing quadratic response surface model

  • Materials & Fracture · Solids & Structures · Dynamics & Control · Production & Design
  • Published:
KSME International Journal Aims and scope Submit manuscript

Abstract

For a large scaled optimization based on response surface methods, an efficient quadratic approximation method is presented in the context of the trust region model management strategy. If the number of design variables inn, the proposed method requires only 2n+1 design points for one approximation, which are a center point and two additional axial points within a systematically adjusted trust region. These design points are used to uniquely determine the main effect terms such as the linear and quadratic regression coefficients. A quasi-Newton formula then uses these linear and quadratic coefficients to progressively update the two-factor interaction effect terms as the sequential approximate optimization progresses. In order to show the numerical performance of the proposed method, a typical unconstrained optimization problem and two dynamic response optimization problems with multiple objective are solved. Finally, their optimization results compared with those of the central composite designs (CCD) or the over-determined D-optimality criterion show that the proposed method gives more efficient results than others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexandrov, N., 1996, “Robustness Properties of a Trust Region Frame Work for Managing Approximations in Engineering Optimization,”Proceedings of the 6 th AIAA/NASA/USAF Multidisciplinary Analysis & Optimization Symposium, AIAA 96-4102-CP, Bellevue, Washington, September 7–9, pp. 1056–1059.

  • Bloebaum, C. L., Hong, W. and Peck, A., 1994, “Improved Move Limit Strategy for Approximate Optimization,”Proceedings of the 5 th AIAA/USAF/NASA/ISSMO Symposium, AIAA 94-4337-CP, Panama City, Florida, September 7–9, pp. 843–850.

  • Box, G. E. and Draper, N. R., 1987,Empirical Model Building and Response Surfaces, John Wiley, New York.

    MATH  Google Scholar 

  • Box, M. J. and Draper, N. R., 1971, “Factorial Designs, the |XX| Criterion, and Some Related Matters,”Technometrics, Vol. 13, No. 4, pp. 731–742.

    Article  MATH  Google Scholar 

  • Carpenter, W. C., 1993, “Effect of Design Selection on Response Surface Performance,”Contractor Report 4520, NASA, June.

  • Celis, M. R., Dennis, J. E. and Tapia, R. A., 1985, “A Trust Region Strategy for Nonlinear Equality Constrained Optimization,”Numerical optimization 1984 (Boggs PT, Byrd RH and Schnabel RB. Eds), SIAM, Philadelpia, pp. 71–88.

    Google Scholar 

  • Corana, et al., 1987, “Minimizing Multimodal Functions of Continuous Variables with the Simulated Annealing Algorithm,”ACM Transaction on Mathematical Sofware, Vol. 13, No. 3, pp. 262–280.

    Article  MATH  MathSciNet  Google Scholar 

  • Dennis, J. E. and Torczon, T., 1996, “Approximation Model Management for Optimization,”Proceedings of the 6 th AIAA/NASA/USAF Multidisciplinary Analysis & Optimization Symposium, AIAA 96-4046, Bellevue, Washington, September 7–9, pp. 1044–1046.

  • Fletcher, R., 1972, “An Algorithm for Solving Linearly Constrained Optimization Problems,”Math. Prog., Vol. 2, pp. 133–165.

    Article  MATH  MathSciNet  Google Scholar 

  • Fletcher, R., 1987,Practical Method of Optimization, John Wiley & Sons: Chichester.

    Google Scholar 

  • Grandhi, R. V., Haftka, R. T. and Watson, L. T., 1986, “Design-Oriented identification of Critical Times in Transient Response,”AIAA Journal, Vol. 24, No. 4, pp. 649–656.

    Article  Google Scholar 

  • Haim, D., Giunta, A. A., Holzwarth, M. M., Mason, W. H., Watson, L. T. and Haftka, R. T., 1999, “Comparison of optimization Software Packages for an Aircraft Multidisciplinary Design Optimization problem,”Design Optimization: international Journal for product & Process Improvement, Vol. 1, No. 1, pp. 9–23.

    Google Scholar 

  • Haug, E. J. and Arora, J. S., 1979,Applied optimal Design, Wiley-Interscience, New York, pp. 341–352.

    Google Scholar 

  • Nelson, II. S. A. and Papalambros, P. Y., 1999, “The Use of Trust Region Algorithms to Exploit Discrepancies in Function Computation Time Within Optimization Models,”ASME Journal of Mechanical Design, Vol. 121, pp. 552–556.

    Article  Google Scholar 

  • Osyzka, A., 1984,Multicriterion optimization in Engineering with Fortran programs. Ellis Horwood: Chichester, pp. 31–39.

    Google Scholar 

  • Powell, M. J. D., 1975, “Convergence Properties of a Class of Minimization Algorithms,”Nonlinear Programming 2 (Mangasarian OL, Meyer RR and Robinson SM Eds), Academic Press, New York.

    Google Scholar 

  • Powell, M. J. D., 1978, “A Fast Algorithm for Nonlinearly Constrained Optimization Calculations,”Numerical Analysis Proceedings Dundee 1977 (Watson GA. Eds), Springer-Verlag: Berlin, pp. 144–157.

    Google Scholar 

  • Rodriguez, J. F., Renaud, J. E. and Watson, L. T., 1988, “Trust Region Augmented Lagrangian methods for Sequential Response Surface Approximation and Optimization,”ASME Journal of Mechanical Design, Vol. 120, pp. 58–66.

    Article  Google Scholar 

  • Unal, R., Lepsch, R. A. and McMilin, M. L., 1988, “Response Surface Model Building and Multidisciplinary Optimization Using D-Optimal Designs,”Proceedings of the 7 th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA-98-4759, St. Louis, Missouri, September 2–4, pp. 405–411.

  • Wujek, B., Renaud, J. E., Batill, S. M. and Brockman, J. B., 1996, “Concurrent Subspace Optimization Using Design Variable Sharing in a Distributed Computing Environment,”Concurrent Engineering: Research and Applications (CERA), Technomic Publishing Company Inc: December.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Hoon Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, KJ., Kim, MS. & Choi, DH. Efficient approximation method for constructing quadratic response surface model. KSME International Journal 15, 876–888 (2001). https://doi.org/10.1007/BF03185266

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03185266

Key Words

Navigation