Skip to main content
Log in

Heat transfer from horizontal cylinders to a turbulent air flow

  • Published:
Applied Scientific Research, Section A Aims and scope Submit manuscript

Summary

Measurements were made of the heat transfer from horizontal wires and cylinders to air in the case of a vibrating wire and of wires and cylinders of various diameters in a smooth and in a turbulent air flow of known intensity and scale of turbulence. The Reynolds numbers ranged from 60 to 25 800, the intensity of turbulence from 2% to 13% and the ratio between the integral scale of turbulence and cylinder diameter from 0.31 to 240. The results show how the ratio between the Nusselt number in turbulent flow and the Nusselt number in smooth flow varies as a function of the Reynolds number, ot the intensity of turbulence and of the ratio between the scale of turbulence and cylinder diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

constant

b :

constant

c d :

drag coefficient of a cylinder

d :

diameter of a cylinder, wire or sphere

f :

function

F :

surface area of a cylinder

L :

a length scale of turbulence

L x :

integral length scale of turbulence

Nu :

Nusselt number =αd

Nu * :

ratio betweenNu for turbulent flow andNu for laminar flow

P :

pressure on cylinder wall

Q :

heat input

Re :

Reynolds number =U d

u :

longitudinal velocity fluctuation

u′ :

root-mean-square ofu

U :

time-mean velocity

v :

transverse velocity fluctuation

v′ :

root-mean-square ofv

X :

distance between a grid in the wind tunnel and a cylinder

α:

coefficient of heat transmission, or angular distance along the circumference of a cylinder from the forward stagnation point

θ:

temperature excess

A :

coefficient of heat conduction

ν:

coefficient of kinematic viscosity

ϕ:

function of (Re.u′/U)

ψ:

function of (L x /d)

References

  1. Reiher, H., Mitt. Forschungsarbeiten269 1925.

  2. Goukman, H., V. Joukovsky, and L. G. Loitsiansky, Techn. Phys. U.S.S.R.,1 (1934) 221.

    Google Scholar 

  3. Loitsiansky, L. G. and B. A. Schwab, Central Aerod. Hydr. Inst. Moscow, Rep.320, 1935.

  4. Comings, E. W., J. T. Clapp and J. F. Taylor, Industr. Eng. Chem.40 (1943) 1076.

    Article  Google Scholar 

  5. Maisel, D. S. and T. K. Sherwood, Chem. Eng. Progr. 46 (1950) 131.

    Google Scholar 

  6. Haas van Dorsser, A. H. de, H. A. Leniger and D. A. van Meel, Ingenieur61 (1949) Chem. 25.

  7. Martinelli, R. C. and L. M. K. Boelter, Proc. Vth Int. Congr. Appl. Mech., Cambridge, Mass., 1938, 578.

  8. Lemlich, R., Industr. Eng. Chem.47 (1955) 1175.

    Article  Google Scholar 

  9. Reynolds, O., Trans. Roy. Soc. London A186 (1894) 123; see also: Scientific Papers II, London 1901, p. 535.

    Article  ADS  Google Scholar 

  10. Prandtl, L., Z. Phys.11 (1910) 1072.

    Google Scholar 

  11. Taylor, G. I., British Adv. Comm. Aeron., Rep. and Mem.272, 1916.

  12. Kármán, Th. von, Trans. Amer. Soc. Mech. Engrs61 (1939) 705.

    Google Scholar 

  13. Taylor, G. I., Proc. Roy. Soc. London A156 (1936) 307.

    Article  MATH  ADS  Google Scholar 

  14. Dryden, H. L., G. B. Schubauer, W. C. Mock and H. K. Skramstad, Nat.

  15. Hegge Zijnen, B. G. van der, Appl. sci. Res. A7 (1957) 149. Adv. Comm. Aeron. Techn. Rep.581 (1937) 16, and fig. 18.

    Google Scholar 

  16. Fayette Taylor, C, Nat. Adv. Comm. Aeron. Techn. Note 380, 1931.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Der Hegge Zijnen, B.G. Heat transfer from horizontal cylinders to a turbulent air flow. Appl. sci. Res. 7, 205–223 (1958). https://doi.org/10.1007/BF03184649

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03184649

Keywords

Navigation