Skip to main content
Log in

Calcium carbonate pump during Quaternary glacial cycles in the South China Sea

  • Reports
  • Published:
Chinese Science Bulletin

Abstract

The preservation and dissolution of calcium carbonate (namely calcium carbonate pump) controls the pH of seawater in global oceans by its buffer effect, and in turn plays a significant role in global changes in atmospheric CO2 concentration. The results from measured carbonate contents over the past 2 Ma at ODP Site 1143 in the South China Sea provide high-resolution records to explore the process of the calcium carbonate pump during Quaternary glacial cycles. The results indicate statistically that the highest carbonate accumulation rate leads the lightest δ18O by about 3.6 ka at transitions from glacials to interglacials, and that the strongest carbonate dissolution lags the lightest δ18O by about 5.6 ka at transitions from interglacials to glacials. The calcium carbonate pump releases CO2 to the atmosphere at the glacial-interglacial transitions, but transports atmospheric CO2 to deep sea at the interglacial-glacial transitions. The adjustable function of the calcium carbonate pump for the deep-sea CO 2−3 concentration directly controls parts of global changes in atmospheric CO2, and contributes the global carbon cycle system during the Quaternary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hays, J. D., Imbrie, J., Shackleton, N. J., Variations in the Earth’s orbit: pacemaker of the Ice Ages, Science, 1976, 194: 1121–1132.

    Article  Google Scholar 

  2. Sigman, D. M., Boyle, E. A., Glacial/interglacial variations in atmospheric carbon dioxide, Nature, 2000, 407: 859–869.

    Article  Google Scholar 

  3. Webb, R. S., Lehman, S. J., Rind, D. H. et al., Influence of ocean heat transport on the climate of the Last Glacial Maximum, Nature, 1997, 385: 695–699.

    Article  Google Scholar 

  4. Petit, J. R., Jouzel, J., Raynaud, D. et al., Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature, 1999, 399: 429–436.

    Article  Google Scholar 

  5. Adams, J. M., Faure, H., Faure-Denard, L. et al., Increases in terrestrial carbon storage from the Last Glacial Maximum to the present, Nature, 1990, 348: 711–714.

    Article  Google Scholar 

  6. Guilderson, T. P., Fairbanks, R. G., Rubenstone, J. L., Tropical temperature variations since 20000 years ago: modulating interhemispheric climate change, Science, 1994, 263: 663–665.

    Article  Google Scholar 

  7. Broecker, W., Peng, T.-H., The role of CaCO3 compensation in the glacial to interglacial atmospheric CO2change, Glob. Biogeochem. Cycles, 1987, 1: 15–29.

    Article  Google Scholar 

  8. McElroy, M. B., Marine geological controls on atmospheric CO2and climate, Nature, 1983, 302: 328–329.

    Article  Google Scholar 

  9. Sarmiento, J. L., Toggweiler, J. R., A new model for the role of the oceans in determining atmospheric pCO2, Nature, 1983, 308: 621–624.

    Article  Google Scholar 

  10. Elderfield, H., Carbonate mysteries, Science, 2002, 296: 1618–1621.

    Article  Google Scholar 

  11. Broecker, W. S., Ocean chemistry during glacial time, Geochim. Cosmochim. Acta, 1982, 46: 1689–1706.

    Article  Google Scholar 

  12. Anderson, R. F., Chase, Z., Fleisher, M. Q. et al., The Southern Ocean’s biological pump during the Last Glacial Maximum, Deep Sea Res. II, 2002, 49: 1909–1938.

    Article  Google Scholar 

  13. Jansen, H., Modelling the marine carbonate pump and its implications on the atmospheric CO2concentration, Bremen: Universität Bremen (Dissertation), 2001, 1–128.

    Google Scholar 

  14. Broecker, W. S., Sanyal, A., Magnitude of the CaCO3 dissolution events making the onset of times of glaciation, Paleoceanography, 1997, 12: 530–532.

    Article  Google Scholar 

  15. Broecker, W. S., Clark, E., Glacial-to-Holocene redistribution of carbonate ion in the deep sea, Science, 2001, 294: 2152–2155.

    Article  Google Scholar 

  16. Anderson, D. M., Archer, D., Glacial-interglacial stability of ocean pH inferred from foraminifer dissolution rates, Nature, 2002, 416: 70–73.

    Article  Google Scholar 

  17. Keir, R. S., Berger, W. H., Atmospheric CO2content in the last 120,000 years: the phosphate-extraction model, J. Geophys. Res., 1983, 88: 6027–6038.

    Article  Google Scholar 

  18. Peterson, L. C., Prell, W. L., Carbonate preservation and rates of climatic change: an 800 kyr record from the Indian Ocean (eds. Sundquist, E. T., Broecker, W. S.), The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, Washington, D. C: AGU, Geophys. Monogr. 32, 1985, 251–269.

    Google Scholar 

  19. Wu, G., Yasuda, M. K., Berger, W. H., Late Pleistocene carbonate stratigraphy on Ontong-Java Plateau in the western equatorial Pacific, Mar. Geol., 1991, 99: 135–150.

    Article  Google Scholar 

  20. Le, J., Shackleton, N. J., Carbonate dissolution fluctuations in the western equatorial Pacific during the Late Quaternary, Paleoceanography, 1992, 7: 21–42.

    Article  Google Scholar 

  21. Curry, W. B., Lohmann, G. P., Late Quaternary carbonate sedimentation at the Sierra Leone Rise (eastern equatorial Atlantic Ocean), Mar. Geol., 1986, 70: 223–250.

    Article  Google Scholar 

  22. Hodell, D. A., Charles, C. D., Sierro, F. J., Late Pleistocene evolution of the ocean’s carbonate system, Earth Planet. Sci. Lett., 2001, 192: 109–124.

    Article  Google Scholar 

  23. Sanyal, A., Hemming, N. G., Hanson, G. N. et al., Evidence for a higher pH in the glacial ocean from boron isotopes in foraminifera, Nature, 1995, 373: 234–236.

    Article  Google Scholar 

  24. Wang, H., Jain, Z., Carbonate dilution cycles in the late Quaternary South China Sea (eds. Ye, Z., Wang, P.), Contributions to Late Quaternary Paleoceanography of the South China Sea (in Chinese with English abstract), Qingdao: Qingdao Ocean Univ. Press, 1992, 283–294.

    Google Scholar 

  25. Wang, P., Prell, W. L., Blum, P. et al., Proceedings of the ODP, Initial Reports 184, College Station: Ocean Drilling Program, Texas A&M University, 2000, 1–103 [CD-ROM].

    Google Scholar 

  26. Rottmann, M. L., Dissolution of planktonic foraminifera and pteropods in South China Sea sediments, J. Foraminiferal Res., 1979, 9: 41–49.

    Article  Google Scholar 

  27. Miao, Q. R., Thunell, C., Anderson, D. M., Glacial-Holocene carbonate dissolution and sea surface temperatures in the South China and Sulu seas, Paleoceanography, 1994, 9: 269–290.

    Article  Google Scholar 

  28. Hanebuth, T., Stattegger, K., Grootes, P. M., Rapid flooding of the Sunda Shelf: A late-glacial sea-level record, Science, 2000, 288: 1033–1035.

    Article  Google Scholar 

  29. Thunell, R. C., Miao, Q., Calvert, S. E. et al., Glacial-Holocene biogenic sedimentation patterns in the South China Sea: Productivity variations and surface water pCO2, Paleoceanography, 1992, 7: 143–162.

    Article  Google Scholar 

  30. Wang, P., Tian, J., Cheng, X., Transition of Quaternary glacial cyclicity in deep-sea records at Nansha, the South China Sea, Science in China, Ser. D, 2001, 44(10): 926–933.

    Article  Google Scholar 

  31. Shackleton, N. J., Berger, A., Peltier, W. R., An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677, Transactions of the Royal Society of Edinburgh: Earth Sciences, 1990, 81: 251–261.

    Google Scholar 

  32. Tian, J., Wang, P., Cheng, X. et al., Astronomically tuned Plio-Pleistocene benthic δ18O record from South China Sea and Atlantic-Pacific comparison, Earth Planet. Sci. Lett., 2002, 203: 1015–1029.

    Article  Google Scholar 

  33. Jones, A., Kaiteris, P., A vacuum gasometic technique for rapid and precise analysis of calcium carbonate in sediments and soils, J. Sediment. Petrol., 1983, 53: 655–660.

    Google Scholar 

  34. Howard, W. R., Prell, W. L., Late Quaternary CaCO3 production and preservation in the Southern Ocean: Implications for oceanic and atmospheric carbon cycling, Paleoceanography, 1994, 9: 453–482.

    Article  Google Scholar 

  35. Howell, P., ARAND time series and spectral analysis package for the Macintosh, Brown University, IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series #2001-044, Boulder, Colorado, USA: NOAA/NGDC Paleoclimatology Program, 2001.

    Google Scholar 

  36. Imbrie, J., Hays, J. D., Martinson, D. G. et al., The ordital theory of Pleistocene climate: A support from a revised chronology of the marine δ18O record (eds. Berger, A., Imbrie, J.), Milankovitch and Climate, Mass: Hingham, 1984, 269–305.

    Google Scholar 

  37. Ruddman, W. F., Pleistocene sedimentation in the equatorial Atlantic: Stratigraphy and faunal paleoclimatology, Bull. Geol. Soc. Am., 1971, 82: 283–302.

    Article  Google Scholar 

  38. Wang, P., Min, Q., Bian, Y. et al., Planktonic foraminifera in the continental slope of the northern South China Sea during the last 130,000 years and their paleoceanographic implications, Acta Geol. Sin. (in Chinese and English abstract), 1986, 60: 215–225.

    Google Scholar 

  39. Wang, P., Wang, L., Bian, Y. et al., Late Quaternary paleoceanography of the South China Sea: surface circulation and carbonate cycles, Mar. Geol., 1995, 127: 145–165.

    Article  Google Scholar 

  40. Fischer, H., Wahlen, M., Smith, J. et al., Ice cope records of atmospheric CO2around the last three glacial terminations, Science, 1999, 283: 1712–1714.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifei Liu.

About this article

Cite this article

Liu, Z., Xu, J., Tian, J. et al. Calcium carbonate pump during Quaternary glacial cycles in the South China Sea. Chin.Sci.Bull. 48, 1862–1869 (2003). https://doi.org/10.1007/BF03184069

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03184069

Keywords

Navigation