Skip to main content
Log in

JWA, a novel microtubule-associated protein, regulates homeostasis of intracellular amino acids in PC12 cells

  • Reports
  • Published:
Chinese Science Bulletin

Abstract

Our previous studies demonstrated that JWA, a novel retinoic acids responsive and cytoskeleton related gene, is associated with cell differentiation and apoptosis. In the present study, to elucidate if the JWA is a novel kind of microtubule-associated proteins (MAPs) and functionally link to microtubule, we first successfully identified JWA from the physically purified MAPs complex of rat brain tissues. The results of co-immunoprecipitation, gene transfection and immunofluorescence microscopy assays from HBE and NIH3T3 cells provide strong evidence for a linkage between JWA and β-tubulin. In general, JWA is stably binding to β-tubulin whenever microtubule is polymerized or not, and it may be critical to the mitosis process. In addition, by use of the antisense oligonucleotides technique, we also showed that JWA is a negative modulator on intracellular amino acids in PC 12 cells. Further analysis indicated that JWA selectively regulates both taurine, an inhibitory amino acid, and glutamate, an excitatory amino acid. In conclusion, JWA is not only structurally associated, but also a novel functional MAP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bifulco, M., Laezza, C., Stingo, S. et al., 2′, 3′-Cyclic nucleotide 3′ -phosphodiesterase: a membrane-bound, microtubule associated protein and membrane anchor for tubulin, Proc. Natl. Acad. Sci., 2002, 99: 1807–1812.

    Article  Google Scholar 

  2. Bernier-Valentin, F., Aunis, D., Rousset, B., Evidence for tubulin-binding sites on cellular membranes: plasma membranes, mitochondrial membranes, and secretory granule membranes, J. Cell Biol., 1983, 97: 209–216.

    Article  Google Scholar 

  3. Smith, D. S., Jarlfors, U., Cayer, M. L., Structural cross-bridges between microtubules and mitochondria in central axons of an insect (Periplaneta americana), J. Cell Sci., 1977, 27: 255–272.

    Google Scholar 

  4. Heggeness, M. H., Simon, M., Singer, S. J., Association of mitochondria with microtubules in cultured cells, Proc. Natl. Acad. Sci., 1978, 75: 3863–3866.

    Article  Google Scholar 

  5. Gray, E. G., Presynaptic microtubules and their association with synaptic vesicles, Proc. R. Soc. Lond. B. Biol. Sci., 1975, 190: 367–372.

    Article  Google Scholar 

  6. Vogl, A. W., Spatially dynamic intercellular adhesion junction is coupled to a microtubule-based motility system: evidence from anin vitro binding assay, Cell Motil. Cytoskeleton, 1996, 34: 1–12.

    Article  Google Scholar 

  7. Mithieux, G., Audebet, C., Rousset, B., Association of purified thyroid lysosomes to reconstituted microtubules, Biochim. Biophys. Acta, 1988, 969: 121–130.

    Article  Google Scholar 

  8. Dentier, W. L., Microtubule-membrane interactions in cilia and flagella, Int. Rev. Cytol., 1981, 72: 1–47.

    Article  Google Scholar 

  9. Hardham, A. R., Gunning, B. E., Structure of cortical microtubule arrays in plant cells, J. Cell Biol., 1978, 77: 14–34.

    Article  Google Scholar 

  10. Xia, W., Zhou, J. W., Cao, H. X. et al., Relationship between structure and functionof JWA in modulation of cell differentiation, Chinese Science Bulletin, 2001, 46(24): 2063–2067.

    Article  Google Scholar 

  11. Cao, H. X., Xia, W., Shen, Q. et al., Role ofJWA in acute promyelocytic leukemia cell differentiation and apoptosis triggered by retinoic acid, 12-tetradecanoylphorbol-13-acetate and arsentic trioxide, Chinese Science Bulletin, 2002, 47(10): 834–838.

    Article  Google Scholar 

  12. Zhou, J. W., Di, Y. P., Zhao, Y. H. et al., A novel cytoskeleton associate gene-clonging, identification, sequencing, regulation of expression and tissue distribution ofJWA (in Chinese), in Investigation on Cell Modulation: Signal Transduction, Apoptosis and Gene Expression (eds. Ye, X. S., Shen, B. F., Tang, X. F. et al.), Beijing: Military Medical Sciences Press, 1999, 110–119.

    Google Scholar 

  13. Ann, D. K., Wu, M. M., Wu, R. et al., Retinol-regulated gene expression in human tracheobronchial epithelial cells, J. Biol. Chem., 1988, 263: 3546–3549.

    Google Scholar 

  14. Nogales, E., Medrano, F. J., Diakun, G. P. et al., The effect of temperature on the structure of vinblastine-induced polymers of purified tubulin: detection of a reversible conformational change, J. Mol. Biol., 1995, 254: 416–430.

    Article  Google Scholar 

  15. Bhattacharyya, B., Wolff, J., Polymerisation of membrane tubulin, Nature, 1976, 264: 567–577.

    Article  Google Scholar 

  16. Abdul-Ghani, M., Gougeon, P. Y., Prosser, D. C. et al., PRA isoforms are targeted to distinct membrane compartments, J. Biol. Chem., 2001, 276: 6225–6233.

    Article  Google Scholar 

  17. Chavrier, P., Vingron, M., Sander, C. et al., Molecular cloning of YPTl/SEC4-related cDNAs from an epithelial cell line, Mol. Cell Biol., 1990, 10: 6578–6585.

    Google Scholar 

  18. Matteoli, M., Takei, K., Cameron, R. et al., Association of Rab3A with synaptic vesicles at late stages of the secretory pathway, J. Cell Biol., 1991, 115: 625–633.

    Article  Google Scholar 

  19. Elferink, L. A., Anzai, K., Seheller, R. H., Rabl5, a novel low molecular weight GTP-binding protein specifically expressed in rat brain, J. Biol. Chem., 1992, 267: 5768–5775.

    Google Scholar 

  20. Ngsee, J. K., Elferink, L. A., Seheller, R. H., A family of ras-like GTP-binding proteins expressed in electromotor neurons, J. Biol. Chem., 1991, 266: 2675–2680.

    Google Scholar 

  21. Fischer, von Mollard, G., Mignery, G. A., Baumert, M. et al., Rab3 is a small GTP-binding protein exclusively localized to synaptic vesicles, Proc. Natl. Acad. Sci., 1990, 87: 1988–1992.

    Article  Google Scholar 

  22. Lazar, T., Gotte, M., Gallwitz, D., Vesicular transport: how many Ypt/Rab-GTPases make an eukaryotic cell, Trends Biochem. Sci., 1997, 22: 468–472.

    Article  Google Scholar 

  23. Novick, P., Zerial, M., The diversity of Rab proteins in vesicle transport, Curr. Opin. Cell Biol., 1997, 9: 496–504.

    Article  Google Scholar 

  24. Martinez, O., Goud, B., Rab proteins, Biochim. Biophys. Acta, 1998, 1404: 101–112.

    Article  Google Scholar 

  25. Chen, W. Q., Jin, H., Nguyen, M. et al., Role of taurine in regulation of intracellular calcium level and neuroprotective function in cultured neurons, J. Neurosci. Res., 2001, 66: 612–619.

    Article  Google Scholar 

  26. Saransaari, P., Oja, S. S., Taurine and neural cell damage, Amino Acids, 2000, 19: 509–526.

    Article  Google Scholar 

  27. Lin, C. L., Orlov, I., Ruggiero, A. M. et al., Modulation of the neuronal glutamate transporter EAAC 1 by the interacting protein GTRAP3-18, Nature, 2001, 410: 84–88.

    Article  Google Scholar 

  28. Butchbach, M. E., Guo, H., Lin, C. L., Methyl-beta-cyclodextrin but not retinoic acid reduces EAAT3-mediated glutamate uptake and increases GTRAP3-18 expression, J. Neurochem., 2003, 84: 891–894

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwei Zhou.

Additional information

Co-first authors.

About this article

Cite this article

Li, A., Li, A., Mao, W. et al. JWA, a novel microtubule-associated protein, regulates homeostasis of intracellular amino acids in PC12 cells. Chin.Sci.Bull. 48, 1828–1834 (2003). https://doi.org/10.1007/BF03184063

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03184063

Keywords

Navigation