Skip to main content
Log in

Role of FGF-2/FGFR signaling pathway in cancer and its signification in breast cancer

  • Review
  • Published:
Chinese Science Bulletin

Abstract

Fibroblast growth factor-2 (FGF-2) is a member of a large family of proteins that bind heparin and heparan sulfate and modulate the function of a wide range of cell types. It has been proved that FGF-2 stimulates the growth and development of new blood vessels (angiogenesis) that contribute to the pathogenesis of several diseases (i.e. cancer, atherosclerosis). However, many of the biological activities of FGF-2 have been found to depend on its receptor’s intrinsic tyrosine kinase activity and second messengers such as the mitogen activated protein kinases. This review will focus on the mechanism of FGF-2/FGFR induced signaling pathway in tumor and human breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Faham, S., Hileman, R. E., Fromm, J. R. et al., Heparin structure and interaction with basic fibroblast growth factor, Science, 1996, 271: 1116–1120.

    Article  Google Scholar 

  2. Jasodhara, R., Andrew, B., Fred, H. G., A 10-amino acid sequence of fibroblast growth factor 2 is sufficient for its mitogenic activity on neural progenitor cells, Proc. Nati. Acad. Sci., 1997, 94: 7047–7052.

    Article  Google Scholar 

  3. Ying, Q. L., Marios, S., Dean, G. et al., Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture, Nature Biotechnology, 2003, 21: 183–186.

    Article  Google Scholar 

  4. Yang, R., Gao, Y. P., Liu, H. X., FGF-2/FGFR and woman tumor, Fore. Medi. Woman and Children Health Care (in Chinese), 2002, 13(1): 25–27.

    Google Scholar 

  5. Lee, P. L., Johnson, D. E., Cousens, L. S. et al., Purification and complementary DNA cloning of a receptor for basic fibro-blast growth factor, Science, 1989, 245: 57–60.

    Article  Google Scholar 

  6. Hong, A., Lin, J., FGF-2 and tumor, Life Sci. (in Chinese), 2001, 13(4): 180–181.

    Google Scholar 

  7. Chaudhuri, M. M., Moscatelli, D., Basilico, C., Involvement of the conserved acidic amino acid domain of FGF receptor 1 in ligand receptor interactions, J. Cell Physiol., 1993, 157: 209–216.

    Article  Google Scholar 

  8. Wang, J. K., Goldfarb, M., Amino acid residues that distinguish the mitogenic potentials of two FGF receptors, Oncogene, 1997, 14: 1767–1778.

    Article  Google Scholar 

  9. Mohammadi, M., Dikic, I., Sorokin, A. et al., Identification of six novel auto phosphorylation sites on fibroblast growth factor receptor 1 and elucidation of their importance in receptor activation and signal transduction, Mol. Cell Biol., 1996, 16: 977–989.

    Google Scholar 

  10. Pellegrini, L., David, F., Burke, F. et al., Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin, Nature, 2000, 407: 1029–1034.

    Article  Google Scholar 

  11. Matthew, A. N., Renato, V. I., Fibroblast growth factor-2, The Inte. J. of Bioc. & Cell Biol., 2000, 32: 115–120.

    Article  Google Scholar 

  12. Berridge, M. J., Cell signaling: A tale of two messengers, Nature, 1993, 365: 388–389.

    Article  Google Scholar 

  13. Klint, P., Kanda, S., Kloog, Y. et al., Cotribution of Src and ras pathways in FGF-2-induced endothelial cell differentiation, Oncogene, 1999, 18: 3354–3364.

    Article  Google Scholar 

  14. Ktonks, N., Neel, B. G., From form to function: signaling by protein tyrosine phosphatese, Cell, 1996, 87: 365–368.

    Article  Google Scholar 

  15. Zhang, S. C., Wernig, M., Duncan, I. D. et al.,In vitro differentiation of transplantable neural precursors from human embryonic stem cells, Nature Biotechnology, 2001, 19(12): 1065–1087.

    Article  Google Scholar 

  16. Krejc, P., Dvorakova, D., Krahulcova, E. et al., FGF-2 abnormalities in B cell chronic lymphocytic and chronic myeloid leukemias, Leukemia, 2001, 15: 228–237.

    Article  Google Scholar 

  17. Rusnati, M., Tulipano, G., Urbinati, C. et al., The basic domain in HIV-1 tat protein as a target for polysulfonated heparin-mimicking extracellular tat antagonists, J. Biol. Chem., 1998, 273: 16027–16037.

    Article  Google Scholar 

  18. Karen, M., Karen, M. N., Robert, F. et al., Ligand-independent activation of fibroblast growth factor receptors by point mutations in the extracellular, transmembrane, and kinase domains, J. Biol. Chem., 1996, 271: 25049–25057.

    Article  Google Scholar 

  19. Kilkenny, D. M., Hill, D. J., Perinuclear localization of an intracellular binding protein related to the fibroblast growth factor (FGF) receptor 1 is temporally associated with the nuclear trafficking of FGF-2 in proliferating epiphyseal growth plate chondrocytes, Endocrinology, 1996, 137(11): 5078–5089.

    Article  Google Scholar 

  20. Xu, W. M., Zhu, X. L., Expression and signification of FGF-2 in the veil star cell carcinoma, Cancer (in Chinese), 2000, 19(1): 61–65.

    Google Scholar 

  21. Bian, X. W., Chen, Z. Q., Guo, D. Y., Human brain expression of angiogenic factors and cell cycle regulation factors in human glioblasto cell line SHG 44, Chinese Pathology Journal (in Chinese), 1999, 28(3): 178–181.

    Google Scholar 

  22. Fujimoto, J., Ichigo, S., Hori, N. et al., Expression of basic fibroblast growth factor and its mRNA in advanced ovarian cancers, Eur. J. Gynaecol. Oncol., 1997, 18(5): 345–352.

    Google Scholar 

  23. Holland, E. C., Varmus, H. E., Basic fibroblast growth factor induces cell migration and proliferation after gliaspecific gene transfer in mice, Proc. Nati. Acad. Sci., 1998, 95(3): 1218–1223.

    Article  Google Scholar 

  24. Sturla, L. M., Westwood, G., Peter, J. S. et al., Induction of cell death by basic fibroblast growth factor in Ewing’s sarcomal, Cancer Research, 2000, 60: 6160–6170.

    Google Scholar 

  25. Sugimoto, H., Nishino, H., Effect of recombinant human basic fibroblast growth factor (bFGF) on the growth of human tumor cell lines, Hum. Cell, 1996, 9(2): 129–140.

    Google Scholar 

  26. Sabine, M. D., Yves, T., Rhoda, L. et al., Antitumor activity of fibroblast growth factors (FGFs) for Medullo-blastoma may correlate with FGF receptor expression and tumor variant-1, Clin. Cancer Res., 2002, 8: 246–257.

    Google Scholar 

  27. Hajime, K., Cao, R. H., Brakenhielm, E. et al., Blockade of vascular endothelial growth factor receptor-3 signaling inhibits fibroblast growth factor-2-induced lymphangiogenesis in mouse cornea, Proc. Nati. Acad. Sci., 2002, 99(13): 8868–8873.

    Article  Google Scholar 

  28. Yamazaki, K., Nagao, T., Yamaguchi, T. et al., Expression of basic fibroblast growth factor (FGF-2)-associated with proliferation in human pancreatic carcinoma, Virchows Arch, 1998, 431(2): 95–101.

    Article  Google Scholar 

  29. Pamela, M., Phorbol esters inhibit fibroblast growth factor-2-stimulated fibroblast proliferation by a p38 MAP kinase dependent pathway, Oncogene, 2002, 21: 1978–1988.

    Article  Google Scholar 

  30. George, M. L., Tutton, M. G., Abulafi, A. M. et al., Plasma basic fibroblast growth factor levels in colorectal cancer: a clinically useful assay? Clin. Exp. Metastasis., 2002, 19(8): 735–738.

    Article  Google Scholar 

  31. Cavallaro, U., Niedermeyer, J., Martin, F. et al., N-CAM modulates tumour-cell adhesion to matrix by inducing FGF-receptor signaling, Nature Cell Biology, 2001, 3: 650–657.

    Article  Google Scholar 

  32. Meleskey, S. W., Ding, I. Y., Lippman, M. E., MDA-MB-134 breast carcinoma cells overexpress fibroblast growth factor (FGF) receptors and are growth-inhibited by FGF ligands, Cancer Press, 1994, 54(2): 523–530.

    Google Scholar 

  33. Hsiung, R., Zhu, W., Klein, G. et al., High basic fibroblast growth factor levels in nipple aspirate fluid are correlated with breast cancer, Pathol. Res. Pract., 2002, 198(1): 1–5.

    Article  Google Scholar 

  34. Liu, J. F., Issad, T., Chevel, E. et al., Fibroblast growth factor-2 has opposite effects on human breast cancer MCF-7 cell growth depending on the activation level of the mitigen-activated protein kinase pathway, Eur. J. Bioc., 1998, 258: 271–276.

    Article  Google Scholar 

  35. Liu, J. F., Chevet, E., Kebache, S. et al., Functional Rac-1 and Nck signaling networks are required for FGF-2-induced DNA synthesis in MCF-7 cells, Oncogene, 1999, 18(47): 6425–6433.

    Article  Google Scholar 

  36. Sophie, A. V. E., Lemoine, J., Chanel, E. S. et al., The mitogenic siganaling pathway for fibroblast growth factor-2 involves the tyrosine phosphorylation if cyclin D2 in MCF-7 human breast cancer cells, FEBS Letter, 2000, 478: 209–215.

    Article  Google Scholar 

  37. Anne-Sophie, V. E., Xavier, C., Michel, C. et al., Proteomic detection of changes in protein synthesis induced by fibroblast growth factor-2 in MCF-7 human breast cancer cells, Experimental Cell Research, 2001, 262: 59–68.

    Article  Google Scholar 

  38. Anne-Sophie, V. E., Lemoine, J., Bourhis, X. L. et al., Proteomic analysis reveals that 14-3-3s is down-regulated in human breast cancer cells, Cancer Research, 2001, 61: 76–80.

    Google Scholar 

  39. Stewart, A. J., Westley, B. R., May, F. E. B. et al., Modulation of the proliferative response of breast cancer cells to growth factor by estrogens, Br. J. Cancer, 1992, 66: 640–648.

    Google Scholar 

  40. Peyrat, J. P., Bonneterre, J., Hondermarck, H. et al., Basic fibroblast growth factor: mitogenic activity and binding sites in human breast cancer cells, Steroid Biochem. Mol. Biol., 1992, 43: 87–94.

    Article  Google Scholar 

  41. Fenig, E., Szyper-Kravitz, M., Yerushalmi, R. et al., Basic fibroblast growth factor mediated growth inhibition in breast cancer cells is independent of ras signaling pathway, Oncol. Rep., 2002, 9(4): 875–877.

    Google Scholar 

  42. Goly, B., Creancier, L., Zanihelato, C. et al., Tumor auppressor p53 inhibits human fibroblast growth factor 2 expression by a post-transcriptional mechanism, Oncogene, 2001, 20(14): 1667–1669.

    Google Scholar 

  43. Zhen, M., Han, Q. D., Mechanism of mitogenic activation protein kinase in apoptosis, Phys. Sci. Proc. (in Chinese), 2000, 31(2): 157–160.

    Google Scholar 

  44. Liu, J. F., Crepin, M., Liu, J. M. et al., FGF-2 and TPA induce matrix metalloproteinase-9 secretion in MCF-7 cells through PKC activation of the Ras/ERK pathway, Biochem. Biophys. Res. Commun., 2002, 293(4): 1174–1182.

    Article  Google Scholar 

  45. Faridi, A., Rudlowski, C., Biesterfeld, S. et al., Long-term follow-up and prognostic significance of angiogenic basic fibroblast growth factor (bFGF) expression in patients with breast cancer, Br. J. Cancer., 2002, 86(5): 761–767.

    Article  Google Scholar 

  46. Randolph, S. P., Lan, D., Pamela, M. et al., Inhibition of cell migration by 24-kD fibroblast growth factor-2 is dependent upon the estrogen receptor, J. of Biol. Chem., 2001, 276(6): 3963–3970.

    Article  Google Scholar 

  47. Lan, D., Fernando, D., Graham, C. et al., Inhibition of cell migration and angiogenesis by the aminoterminal fragment of 24 kD basic fibroblast growth factor, J. of Biol. Chem., 2002, 277(34): 31056–31061.

    Article  Google Scholar 

  48. Anne, M. G., Gary, L., Johnson, N. et al., Fibroblast growth factor-2 suppression of tumor necrosis factor a-mediated apoptosis requires ras and the activation of mitogen-activated protein kinase, J. of Biol. Chem., 1996, 271(24): 14560–14566.

    Article  Google Scholar 

  49. Bompard, G., Francoise, V., Protein-tyrosine phosphatase PTPL1/ FAP-1 triggers apoptosis in human breast cancer cell, J. of Biol. Chem., 2002, 277(49): 47861–47869.

    Article  Google Scholar 

  50. Fürthauer, M., Lin, W., Ang, S. L. et al., Sef is a feedback-induced antagonist of Ras/MAP K-mediated FGF signaling, Nature Cell Biology., 2002, 4: 170–174.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfeng Liu.

About this article

Cite this article

Fang, J., Huang, S., Liu, H. et al. Role of FGF-2/FGFR signaling pathway in cancer and its signification in breast cancer. Chin. Sci. Bull. 48, 1539–1547 (2003). https://doi.org/10.1007/BF03183956

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03183956

Keywords

Navigation