Skip to main content
Log in

Charge recombination in dye-sensitized nanoporous TiO2 solar cell

  • Reviews
  • Published:
Chinese Science Bulletin

Abstract

DSSC has been a subject of intense study throughout the world. The efforts to investigate DSSC are mainly focused on how to increase light absorption, speed electron transport in circuit and reduce charge recombination. In this article, the development of charge recombination in DSSC is discussed, and the investigating techniques, main paths, mechanism and main inhibiting methods of charge recombination in DSSC are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Regan, B. O., Gratzel, M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 film, Nature, 1991, 353 (4): 737–739.

    Article  Google Scholar 

  2. Gratzel, M., Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells, Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164: 3–14.

    Article  Google Scholar 

  3. Claudia, L., Marco, A., Dye-sensitized solar cells: a successful combination of materials, J. Braz. Chem. Soc., 2003, 14(6): 889–901.

    Google Scholar 

  4. Kroon, J. M., Bakker, N. J., Smit, H. J. P. et al., New concepts and materials for world-class dye sensitized solar cells, 19th EU PVSEC, June 2004, Paris.

  5. Wang, Z. S., Huang, C. H., Li, F. Y. et al., Alternative self-assembled films of metal-ion-bridged 3, 4, 9, 10-perylenete-tracarboxylic acid on nanostructured TiO2 electrodes and their photoelectrochemical properties, J. Phys. Chem. B, 2001, 105(19): 4230–4234.

    Article  Google Scholar 

  6. Yang, S. M., H. Y. Y. Huang, C. H. et al., Enhanced energy conversion efficiency of the Sr2+-modified nanoporous TiO2 electrode sensitized with a ruthenium complex, Chem. Mater., 2002, 14: 1500–1504.

    Article  Google Scholar 

  7. Yang, S. M., Li, F. Y., Huang, C. H., Photo chemical characters of dye-sensitized nanoporous TiO2 electrode modified with rare-earth ions (in Chinese), Science of China, Series B, 2003, 33(01): 59–65

    Google Scholar 

  8. Xia, J. B., Li, F. Y., Huang, C. H., Novel qusi-solid-state dye-sensitized solar cell based on monolayer capped TiO2 nanoparticles framework materials, Chinese Journal of Chemistry, 2004, 22: 687–690.

    Google Scholar 

  9. Hu, Z. X., Dai, S. Y., Wang, K. J. et al., Investigation of the adsorption properties of dye anchored onto TiO2 surfaces, Chem. Res. & Appl., 2002, 14(3): 277–279.

    Google Scholar 

  10. Meng, Q. B., Lin, Y., Dai, S. Y., Dye-sensitized nano-film solar cell (in Chinese), Physics, 2004, 33(3): 171–181.

    Google Scholar 

  11. Dai, S. Y., Weng, J., Sui, Y. F. et al., Dye-sensitized solar cells, from cell to module, Solar Energy Materials and Solar Cells, 2004, 84: 125–133.

    Article  Google Scholar 

  12. Wang Zhongsheng, Kawaycgu, H., Kashima, T. et al., Significant influence of TiO2 phtoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell, Coord. Chem. Rev., 2004, 248: 1381–1389.

    Article  Google Scholar 

  13. Yasuteru, S., Shingo, K., Takayuki K. et al., Morphology control of mesoporous TiO2 nanocrystalline films for performance of dye-sensitized solar cells, Solar Energy Materials & Solar Cells, 2004, 82: 1–13.

    Article  Google Scholar 

  14. Tomokazu, O., Aki, N., Yukio, S. et al., Preparation and characterization of titania thin films from aqueous solutions, Journal of Sol-Gel Science and Technology, 2003, 26: 799–802.

    Article  Google Scholar 

  15. Ko, K. H., Lee, Y. C., Jung, Y. J., Enhanced efficiency of dye-sensitized TiO2 solar cells (DSSC) by doping of metal ions, Journal of Colloid and Interface Scinece, 2005, 283: 482–487.

    Article  Google Scholar 

  16. Yang, H., Yuan, J., Zhao, Z. J., Study of photoelectrical conversion characters in TiO2 semiconductor film (in Chinese), Silicate Press, 2004,(1): 62–66.

  17. Weng, Y. X., Xu, J. Z., Pan, J. et al., Simulation of three-line molecule formed by recombination in system reaction center with solar cell reaction, Journal of Integrative Plant Biology, 2000, 42(12): 1215–1219.

    Google Scholar 

  18. Weng, Y. X., Zhang, L., Yang, J. et al., Distance-depengdent long-range electron transfer in protein: a case study of photosynthetic bacterial light-harvesting antenna complex L H2 assembled on TiO2 nanoparticles by femto-second time-resolved spectroscopy, Acta Botanica Sinica, 2003, 45(4): 488–493.

    Google Scholar 

  19. Frank, A. J., Kopidakis, N., Lagemaat, J., Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties, Coordination Chemistry Review, 2004, 248: 1165–1179.

    Article  Google Scholar 

  20. Dloczik, L., Ileperuma, O., Lauermann, L. et al., Dynamic response of dye-sensitized nanocrystalline solar cells: Characterization by intensity-modulated photocurrent spectroscopy, J. Phys. Chem. B, 1997, 101: 10281.

    Article  Google Scholar 

  21. Schlichthorl, G., Park, N. G., Frank, A. J., Evaluation of the charge-collection efficiency of dye-sensitized nanocrystalline TiO2 solar cells, J. Phys. Chem. B, 1999, 103: 782–791.

    Article  Google Scholar 

  22. Schlichthorl, G., Huang, S. Y., Sprague, J. et al., Band edge movement and recombination kinetics in dye-sensitized nanocrystalline TiO2 solar cells: A study by intensity modulated photovoltage spectroscopy, J. Phys. Chem. B, 1997, 101(41): 8141–8155.

    Article  Google Scholar 

  23. Benkstein, K. D., van de Lagemaat, J., Frank, A. J. et al., Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells, J. Phys. Chem. B, 2003, 107(31): 7759–7767.

    Article  Google Scholar 

  24. Lagemaat, J., Frank, A. J., Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystalline TiO2 solar cells: A study by electrical impedance and optical modulation techniques, J. Phys. Chem. B, 2000, 104: 2044–2052.

    Article  Google Scholar 

  25. Bisquert, J., David, C., Hodes, G. et al., Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells, J. Phys. Chem. B, 2004, 108: 8106–8118.

    Article  Google Scholar 

  26. Gregg, B. A., Interfacial processes in the dye-sensitized solar cell, Coordination Chemistry Review, 2004, 248: 1215–1224.

    Article  Google Scholar 

  27. Kuciauskas, D., Freund, M. S., Gray, H. B. et al., Electron transfer dynamics in nanocrystalline titanium dioxide solar cells sensitized with ruthenium or osmium polypyridyl complexes, J. Phys. Chem. B, 2001, 105: 392–403.

    Article  Google Scholar 

  28. Tachibana, Y., Haque, S. A., Mercer, I. P. et al., Electron injection and recombination in dye sensitized nanocrystalline titanium dioxide films: A comparison of ruthenium eipyridyl and porphyrin sensitizer dyes, J. Phys. Chem. B, 2000, 104: 1198–1205.

    Article  Google Scholar 

  29. Fisher, A. C., Peter, L. M., Ponomarev, E. A. et al., Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanocrystalline TiO2 solar cells, J. Phys. Chem. B, 2000, 104: 949–958.

    Article  Google Scholar 

  30. Bauer, C., Boschloo, G., Mukhtar, E. et al., Interfacial electron-transfer dynamics in Ru(tcterpy)(NCS)3-sensitized TiO2 nanocrystalline solar cells, J. Phys. Chem. B, 2002, 106: 12693–12704.

    Article  Google Scholar 

  31. Montanari, I., Nelson, J., Durrant, J. R., Iodide electron transfer kinetics in dye-sensitized nanocrystalline TiO2 films, J. Phys. Chem. B, 2002, 106: 12203–12210.

    Article  Google Scholar 

  32. Zaban, A., Greenshtein, M., Bisquert, Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements, J. Chem. Phys. Chem., 2003, 4: 859–864.

    Google Scholar 

  33. Bisquert, J., Zaban, A., Salvador, P., Analysis of the mechanisms of electron recombination in nanoporous TiO2 dye-sensitized solar cells, nonequilibrium steady-state statistics and interfacial electron transfer via surface states, J. Phys. Chem. B, 2002, 106: 8774–8782.

    Article  Google Scholar 

  34. Nelson, J., Continuous time random walk model of electron transport in nanocrystalline TiO2 electrodes, Phys. Rev. B, 1999, 59: 15374–15380.

    Article  Google Scholar 

  35. Nelson, J., Haque, S. A., Klug, D. R. et al., Trap-limited recombination in dye-sensitized nanocrystalline metal oxide electrodes, Phys. Rev. B, 2001, 63: 205321–1-9.

    Article  Google Scholar 

  36. Barzykin, A. V., Tachiya, M., Mechanism of charge recombination in dye-sensitized nanocrystalline semiconductors: random flight model, J. Phys. Chem. B, 2002, 106: 4356–4363.

    Article  Google Scholar 

  37. Usami, A., Ozaki, H., Computer simulations of charge transport in dye-sensitized nanocrystalline photovoltaic cells, J. Phys. Chem. B, 2001, 105: 4577–4583.

    Article  Google Scholar 

  38. Hagfeldt, A., Gratzel, M., Molecular photovoltaics, Acc. Chem. Res., 2000, 33: 269–277.

    Article  Google Scholar 

  39. Gregg, B. A., Pichot, F., Ferrere, S. et al., Interfacial recombination processes in dye-sensitized solar cells and methods to passivate the interfaces, J. Phys. Chem. B, 2001, 105: 1422–1429.

    Article  Google Scholar 

  40. Petra, J., Laurence, M. P., How important is the back reaction of electrons via the substrate in dye-sensitized nanocrystalline solar cells, J. Phys. Chem. B, 2005, 109: 930–936.

    Article  Google Scholar 

  41. Kumara, G. R. A., Okuya, M., Murakami, K. et al., Dye-sensitized solid-state solar cells made from magnesiumoxide-coated manocrystalline titanium dioxide films: enhancement of the efficiency, Chemistry, 2004, 164: 183–185.

    Google Scholar 

  42. Wang, P., Zakeeruddin, S. M., Comte, P. et al., Enhance the performance of dye-sensitized solar cells by co-grafting amphiphilic sensitizer and hexadecylmalonic acid on TiO2 nanocrystals, J. Phys. Chem. B, 2003, 107(51): 14336–14341.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoxue Zhou.

About this article

Cite this article

Zhang, Z., Zhou, B., Ge, W. et al. Charge recombination in dye-sensitized nanoporous TiO2 solar cell. Chin. Sci. Bull. 50, 2408–2412 (2005). https://doi.org/10.1007/BF03183627

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03183627

Keywords

Navigation