Skip to main content
Log in

Ribosomal DNA gene and phylogenetic relationships of Diplura and lower Hexapods

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

The monophyly of Diplura and its phylogenetic relationship with other hexapods are important for understanding the phylogeny of Hexapoda. The complete 18SrRNAgene and partial 28SrRNA gene (D3-D5 region) from 2 dipluran species (Campodeidae and Japygidae), 2 proturan species, 3 collembolan species, and 1 locust species were sequenced. Combining related sequences in GenBank, phylogenetic trees of Hexapoda were constructed by MP method using a crustaceanArtemia salina as an outgroup. The results indicated that: (i) the integrated data of 18SrDNA and 28SrDNA could provide better phylogenetic information, which well supported the monophyly of Diplura; (ii) Diplura had a close phylogenetic relationship to Protura with high bootstrap support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hennig, W., Kritische bemerkungen zum phylogenetischen system der insekten, Beitr. Ent., 1953, 3(Sonderheft): 1–85.

    Google Scholar 

  2. Manton, S. M., The evolution of arthropodan locomotory mechanisms, Part 10: Locomotory habits, morphology and evolution of the hexapod classes, Zool. J. Linn. Soc., 1972, 51: 203–400.

    Article  Google Scholar 

  3. Kristensen, N. P., Phylogeny of insect orders, Ann. Rev. Ent., 1981, 26: 135–157.

    Article  Google Scholar 

  4. Koch, M., Monophyly and phylogenetic position of the Diplura (Hexapoda), Pedobiologia, 1997, 41: 9–12.

    Google Scholar 

  5. Yin, W. Y., On the hotly debated points in phylogeny of Hexapoda, Chinese Bulletin of Life Sciences (in Chinese), 2001, 13(2): 49–53.

    Google Scholar 

  6. Štys, P., Zrzavý, J., Weyda, F., Phylogeny of the Hexapoda and ovarian metamerism, Biol. Rev. Cambridge Phil. Soc., 1993, 68: 365–379.

    Article  Google Scholar 

  7. Kristensen, N. P., Phylogeny of extant hexapods, in The Insects of Australia (ed. Naumann, I. D.), Vol. 1, 2nd ed., Carlton: CSIRO, Melbourne University Press, 1991, 125–140.

    Google Scholar 

  8. Kukalová-Peck, J., Fossil history and the evolution of hexapod structures, in The Insects of Australia (ed. Naumann, I. D.), Vol. 1, 2nd ed., Carlton: CSIRO, Melbourne University Press, 1991, 141–179.

    Google Scholar 

  9. Yin, W. Y., Xue, L. Z., Comparative spermatology of Protura and its significance on proturan systematics, Science in China, Ser. B, 1993, 36(5): 575–587.

    Google Scholar 

  10. Shao, H. G., Zhang, Y. P., Xie, R. D. et al., Mitochondria cytochromeb sequences variation of Protura and molecular systematics of Apterygota, Chinese Science Bulletin, 1999, 44(22): 2031–2036.

    Article  CAS  Google Scholar 

  11. Shao, H. G., Zhang, Y. P., Ke, X. et al., Sequences of mitochondrial DNA cytochrome oxidase II in cryptopygus nanjiensis and phylogeny of Apterygota, Science in China, Ser. C, 2000, 43(6): 589–596.

    Article  CAS  Google Scholar 

  12. Carapelli, A., Frati, F., Nardi, F. et al., Molecular phylogeny of apterygotan insects based on nuclear and mitochondrial genes, Pedobiologia, 2000, 44(4): 361–373.

    Article  CAS  Google Scholar 

  13. Giribet, G., Ribera, C., A review of arthropod phylogeny: new data based on ribosomal DNA sequences and direct character optimization, Cladistics, 2000, 16: 204–231.

    Article  Google Scholar 

  14. Shultz, J. W., Regier, J. C., Phylogenetic analysis of arthropods using two nuclear protein-encoding genes supports a crustacean+hexapod clade, Proc. R. Soc. Lond, B, 2000, 267: 1011–1019.

    Article  CAS  Google Scholar 

  15. Field, K. G., Olsen, G. J., Lane, D. J. et al., Molecular phylogeny of the animal kingdom, Science, 1988, 239: 748–753.

    Article  CAS  PubMed  Google Scholar 

  16. Hillis, D. M., Dixon, M. T., Ribosomal DNA: molecular evolution and phylogenetic inference, Q. Rev. Biol., 1991, 66(4): 411–453.

    Article  CAS  PubMed  Google Scholar 

  17. Nelles, L., Fang, B. L., Volckaert, G. et al., Nucleotide sequence of a crustacean 18S ribosomal RNA gene and secondary structure of eukaryotic small subunit ribosomal RNAs, Nucleic Acids Res., 1984, 12(23): 8749–8768.

    Article  CAS  PubMed  Google Scholar 

  18. Giribet, G., Ribera, C., The position of arthropods in the animal kingdom: a search for a reliable outgroup for internal arthropod phylogeny, Mol. Phylogenet. Evol., 1998, 9: 481–488.

    Article  CAS  PubMed  Google Scholar 

  19. Edgecombe, G. D., Giribet, G., Wheeler, W. C., Phylogeny of Chilopoda: combining 18S and 28S rRNA sequences and morphology, Bol. SEA, 1999, 26: 293–331.

    Google Scholar 

  20. Gloor, G. B., Preston, C. R., Johnson-Schlitz, D. M. et al., Type I repressors of P element mobility, Genetics, 1993, 135: 81–95.

    CAS  PubMed  Google Scholar 

  21. Frati, F., Dell’Ampio, E., Molecular phylogeny of three subfamilies of the Neanuridae (Insecta, Collembola) and the position of the antarctic speciesFriesea grisea Schäffer, Pedobiologia, 2000, 44: 342–360.

    Article  CAS  Google Scholar 

  22. Hancock, J. M., Tautz, D., Dover, G. A., Evolution of the secondary structures and compensatory mutations of the ribosomal RNAs ofDrosophila melanogaster, Mol. Biol. Evol., 1988, 5(4): 393–414.

    CAS  PubMed  Google Scholar 

  23. Turbeville, J. M., Pfeifer, D. M., Field, K. G. et al., The phylogenetic status of arthropods, as inferred from 18SrRNA sequences, Mol. Biol. Evol., 1991, 8(5): 669–686.

    CAS  PubMed  Google Scholar 

  24. Schulte II, J. A., Macey, J. R., Pethiyagoda, R. et al., Rostral horn evolution among agamid lizards of the genusCeratophora endemic to Sri Lanka, Mol. Phylogenet. Evol., 2002, 22(1): 111–117.

    Article  CAS  PubMed  Google Scholar 

  25. Kumar, S., Tamura, K., Jakobsen, I. B. et al., MEGA2: Molecular Evolutionary Genetics Analysis Software, Arizona State University, Tempe, Arizona, USA, 2001.

    Google Scholar 

  26. Swofford, D. L., PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4.08b Sinauer, Sunderland, MA, 2001.

    Google Scholar 

  27. Farris, J. S., Kallersjo, M., Kluge, A. G. et al., Testing significance of incongruence, Cladistics, 1994, 10: 315–319.

    Article  Google Scholar 

  28. Hillis, D. M., Huelsenbeck, J. P., Signal, noise, and reliability in molecular phylogenetic analyses, J. Hered., 1992, 83(3): 189–195.

    CAS  PubMed  Google Scholar 

  29. Faith, D. P., Cranston, P. S., Could a cladogram this short have arisen by chance alone?— On permutation tests for cladistic structure, Cladistics, 1991, 7: 1–28.

    Article  Google Scholar 

  30. Felsenstein, J., Confidence limits on phylogenies: an approach using the bootstrap, Evolution, 1985, 39: 783–791.

    Article  Google Scholar 

  31. Bremer, K., Branch support and tree stability, Cladistics, 1994, 10: 295–304.

    Article  Google Scholar 

  32. Eriksson, T., Autodecay (Hypercard Stack Program), Botaniska Institutionen, Stockholm University, Stockholm, 1998.

    Google Scholar 

  33. Cibois, A., Pasquet, E., Schulenberg, T. S., Molecular systematics of the Malagasy babblers (Passeriformes: timaliidae) and warblers (Passeriformes: sylviidae), based on cytochromeb and 16S rRNA sequences, Mol. Phylogenet. Evol., 1999, 13(3): 581–595.

    Article  CAS  PubMed  Google Scholar 

  34. Maddison, W. P., Maddison, D. R., MacClade, Analysis of Phylogeny and Character Evolution, Version 3.0, Sinauer, Sunderland, MA, 1992.

    Google Scholar 

  35. Murphy, W. J., Eizirik, E., O’Brien, S. J. et al., Resolution of the early placental mammal radiation using Bayesian phylogenetics, Science, 2001, 294: 2348–2351.

    Article  CAS  PubMed  Google Scholar 

  36. Wiens, J. J., Combining data sets with different phylogenetic histories, Syst. Biol., 1998, 47: 568–581.

    Article  CAS  PubMed  Google Scholar 

  37. Flores, V. O., Kjer, K. M., Benabib, M. et al., Multiple data sets, congruence, and hypothesis testing for the phylogeny of basal groups of the Lizard genusSceloporus (Squamata, Phrynosomatidae), Syst. Biol., 2000, 49(4): 713–739.

    Article  Google Scholar 

  38. Bilinski, S., The ovary of Entognatha, in Jürgen Büning, The Insect Ovary, London: Chapman & Hall, 1994, 7–30.

    Google Scholar 

  39. Bitsch, J., The morphological ground plan of Hexapoda: critical review of recent concepts, Ann. Soc. Ent. Fr. (N.S.), 1994, 30: 103–129.

    Google Scholar 

  40. Dallai, R., Recent findings on apterygotan sperm structure, Acta Zoologica Fennica, 1994, 195: 23–27.

    Google Scholar 

  41. Jamieson, B. G. M., Dallai, R., Afzelius, B. A., Insects: Their Spermatozoa and Phylogeny, New Hampshire: Science Publishers, USA, 1999, 60–80.

    Google Scholar 

  42. Luan, Y. X., Xie, Y. D., Yin, W. Y., Preliminary study on phylogeny of Diplura, Zoological Research (in Chinese), 2002, 23(2): 149–154.

    CAS  Google Scholar 

  43. Giribet, G., Edgecombe, G. D., Wheeler, W. C., Arthropod phylogeny based on eight molecular loci and morphology, Nature, 2001, 413: 157–161.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenying Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luan, Y., Zhang, Y., Yue, Q. et al. Ribosomal DNA gene and phylogenetic relationships of Diplura and lower Hexapods. Sci. China Ser. C.-Life Sci. 46, 67–76 (2003). https://doi.org/10.1007/BF03182686

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03182686

Keywords

Navigation