Skip to main content
Log in

Characterisation of a thermostable catechol-2,3-dioxygenase from phenanthrene-degradingPseudomonas sp. strain ZJF08

  • Ecological and Environmental Microbiology
  • Original Articles
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Four strains with high phenanthrene-degrading ability were isolated from petroleum badly polluted soil. The strainPseudomonas sp. ZJF08 demonstrated the highest rate of degradation (138. 1 mg·L−1·day−1) among them and degraded 97.1% of the phenanthrene in one week. The activities of two key enzymes of ZJF08, polycyclic aromatic hydrocarbon dioxygenase and catechol-2,3-oxygenase (C23O), were also assayed during the degradation of phenanthrene. Both of them reached their maximums on the 2nd day of degradation. The C23O gene (C7) ofPseudomonas sp. ZJF08 was cloned and expressed inEscherichia coli, and its gene product was purified by a Ni-NTA-agarose column. The optimum temperature for the purified C23O was 40°C at pH 7.5 and the C23O activity could be still detected when the temperature reached 70°C. The results showed that the C23O fromPseudomonas sp. strain ZJF08 exhibited better thermostability than its homologs reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boopathy R. (2000). Factors limiting bioremediation technologies. Bioresource Technology, 75: 63–67.

    Article  Google Scholar 

  • Bradford M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Chen S.H., Aitken M.D. (1999). Salicylate stimulates the degradation of high-molecular weight polycyclic aromatic hydrocarbons byPseudomonas saccharophila P15. Environ. Sci. Technol., 33: 435–439.

    Article  CAS  Google Scholar 

  • Guieysse B., Viklund G., Toes A.C., Mattiasson B. (2004). Combined UV-biological degradation of PAHs. Chemosphere, 55: 1493–1499.

    Article  CAS  PubMed  Google Scholar 

  • Hughes J.B., Beckles D.M., Chandra S.D., Ward C.H. (1997). Utilization of bioremediation processes for the treatment of PAH-contaminated sediments. J. Ind. Microbiol. Biotech., 18: 152–160.

    Article  CAS  Google Scholar 

  • Jacques R.J.S., Santos E.C., Bento F.M., Peralba M.C.R., Selbach P.A., Sá E.L.S., Camargo F.A.O. (2005). Anthracene biodegradation byPseudomonas sp. isolated from a petrochemical sludge landfarming site. Int. Biodeter. Biodeg., 56: 143–150.

    Article  CAS  Google Scholar 

  • Johnsen A.R., Wick L.Y., Harms L. (2005). Principles of microbial PAH-degradation in soil. Environ. Pollut., 133: 71–84.

    Article  CAS  PubMed  Google Scholar 

  • Kahng H.Y., Nam K., Kukor J.J., Yoon B.J., Lee D.H., Oh D.C., Kam S.K., Oh K.H. (2002). PAH utilization byPseudomonas rhodesiae KK1 isolated from a former manufactured-gas plant site. Appl. Microbiol. Biotechnol., 60: 475–480.

    Article  CAS  PubMed  Google Scholar 

  • Kanaly R.A., Haryama S. (2000). Biodegradation of high molecular-weight polycyclic aromatic hydrocarbons by bacteria. J. Bacteriol., 182: 2059–2067.

    Article  CAS  PubMed  Google Scholar 

  • Kim D., Chae J-C., Jang J.Y., Zylstra G.J., Kim Y.M., Kang B.S., Kim E. (2005). Functional characterization and molecular modeling of methylcatechol 2,3-dioxygenase from o-xylene-degradingRhodococcus sp. strain DK17. Biochem. Biophys. Res. Comm., 326: 880–886.

    Article  CAS  PubMed  Google Scholar 

  • Kiyohara H., Nagao K. (1978). The catabolism of phenanthrene and naphthalene by bacteria. J. Gen. Microbiol., 105: 69–75.

    CAS  Google Scholar 

  • Kojima Y., Itada N., Hayaishi O. (1961). Metapyrocatechase: a new catechol-cleaving enzyme. J. Biol. Chem., 236: 2223–2228.

    CAS  PubMed  Google Scholar 

  • Langworthy D.E., Stapleton R.D., Sayler G.S., Findlay R.H. (2002). Lipid analysis of the response of a sedimentary microbial community to polycyclic aromatic hydrocarbons. Microb. Ecol., 43: 189–198.

    Article  CAS  PubMed  Google Scholar 

  • Meyer S., Moser R., Neef A., Stahl U., Kämpfer P. (1999). Differential detection of key enzymes of polyaromatic-hydrocarbon-degrading bacteria using PCR and gene probes. Microbiology, 145: 1731–1741.

    Article  CAS  PubMed  Google Scholar 

  • Moffett B.F., Walsh K.A., Harris J.A., Hill T.C.J. (2000). Analysis of bacterial community structure using 16S rDNA analysis. Anaerobe, 6: 129–131.

    Article  CAS  Google Scholar 

  • Nozaki M., Iwaki M., Nakai C., Saeki Y., Horiiki K., Kagamiyama H., Nakazawa T., Ebina Y., Inoue S., Nakazawa A. (1982). In: Nozaki M., Yamamoto S., Ishimura Y., Coon M.J., Ernster L., Estabrook R.W., Eds. Oxygenases and Oxygen Metabolism, Academic Press, New York, pp. 15–26.

    Google Scholar 

  • Resnick S.M., Lee K., Gibson D.T. (1996). Diverse reactions catalyzed by naphthalene dioxygenase fromPseudomonas sp. strain NCIB 9816. J. Ind. Microbiol., 17: 438–457.

    Article  CAS  Google Scholar 

  • Samanta S.K., Singh O.V., Jain R.K. (2002). Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends in Biotechnology, 20: 243–248.

    Article  CAS  PubMed  Google Scholar 

  • Shamsuzzaman K.M., Barnsley E.A. (1974a). The regulation of naphthalene oxygenase inPseudomonads. J. Gen. Microbiol., 83: 165–170.

    CAS  PubMed  Google Scholar 

  • Shamsuzzaman K.M., Barnsley E.A. (1974b). The regulation of naphthalene metabolism inPseudomonads. Biochem. Biophys. Res. Comm., 60: 582–589.

    Article  CAS  PubMed  Google Scholar 

  • Syakti A.D., Acquaviva M., Gliewicz M., Doumenq P., Bertrand J.C. (2004). Comparison ofn-eicosane and phenanthrene removal by pure and mixed cultures of two marine bacteria. Environ. Res., 96: 228–234.

    Article  CAS  PubMed  Google Scholar 

  • Tao X.Q., Lu G.N., Dang Z., Yang C., Yi X.Y. (2007). Isolation of phenanthrene-degrading bacteria and characterization of phenanthrene metabolites. World J. Microbiol. Biotechnol., 23: 647–654.

    Article  CAS  Google Scholar 

  • Tian L., Ma P., Zhong J.J. (2002). Kinetics and key enzyme activities of phenanthrene degradation byPseudomonas mendocina. Process Biochemistry, 37: 1431–1437.

    Article  CAS  Google Scholar 

  • Wong J.W.C., Lai K.M., Wan C.K., Ma K.K., Fang M. (2002). Isolation and optimization of PAH degradative bacteria from contaminated soil for PAHs bioremediation. Water Air Soil Poll., 139: 1–3.

    Article  CAS  Google Scholar 

  • Zhang H., Kallimanis A., Koukkou A.I., Drainas C. (2004). Isolation and characterization of novel bacteria degrading polycyclic aromatic hydrocarbons from polluted Greek soils. Appl. Microbiol. Biotechnol., 65: 124–131.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yushu Ma or Dongzhi Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Y., Wei, J., Jiang, T. et al. Characterisation of a thermostable catechol-2,3-dioxygenase from phenanthrene-degradingPseudomonas sp. strain ZJF08. Ann. Microbiol. 57, 503–508 (2007). https://doi.org/10.1007/BF03175346

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175346

Key words

Navigation