Skip to main content
Log in

Identification ofAcetobacter strains isolated in Thailand based on 16S–23S rRNA gene ITS restriction and 16S rRNA gene sequence analyses

  • Methods
  • Original Articles
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Ninety-seven acetic acid bacteria, which were isolated from fruits, flowers and other material collected in Thailand by an enrichment culture approach, were assigned to the genusAcetobacter by phenotypic and chemotaxonomic characterisations. On the basis of 16S–23S rRNA gene ITS restriction and 16S rRNA gene sequence analyses, the ninety-seven isolates were grouped into three groups and identified at the specific level: 1) group A including fifty-three isolates, which were identified asAcetobacter pasteurianus, 2) group B including forty-two isolates, which were identified asAcetobacter orientalis and 3) group C including two isolates, which were identified asAcetobacter lovaniensis. There was no isolate to be assigned to other 15 species of the genusAcetobacter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asai T., Iizuka H., Komagata K. (1964). The flagellation and taxonomy of generaGluconobacter andAcetobacter with reference to the existence of intermediate strains. J. Gen. Appl. Microbiol., 10: 95–126.

    Article  Google Scholar 

  • Brosius J., Dull T.J., Sleeter D.D., Noller H.F. (1981). Gene organization and primary structure of a ribosomal RNA operon fromEscherichia coli. J. Mol. Biol., 148: 107–127.

    Article  CAS  PubMed  Google Scholar 

  • De Ley J., Swings J., Gosselé F. (1984). Genus I.Acetobacter Beijerinck, 1898, 215AL. In: Krieg N.R., Holt J.G., Eds, Bergey’s Manual of Systematic Bacteriology, Vol. 1 Williams and Wilkins, Baltimore, USA, pp. 268–274.

    Google Scholar 

  • Felsenstein J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39: 783–791.

    Article  Google Scholar 

  • Gosselé J., Swings J., De Ley J. (1980). A rapid, simple and simultaneous detection of 2-keto, 5-keto- and 2,5-diketogluconic acid by thin layer chromatography in culture media of acetic acid bacteria. Zbl. Bakt. Hyg., I. Abt. Orig., C: 178–181.

  • Greenberg D.E., Porcella S.F., Stock F., Wong A., Conville P.S., Murray P.R., Holland S.M., Zelazny A.M. (2006).Granulibacter bethesdensis gen. nov., sp. nov., a distinctive pathogenic acetic acid bacterium in the familyAcetobacteraceae. Int. J. Syst. Evol. Microbiol., 50: 1981–1987.

    Google Scholar 

  • Hucker G.J., Conn H.J. (1923). Method of Gram staining. Technical Bulletin, New York State Agricultural Experiment Station, Ithaca, 93: 3–37.

    Google Scholar 

  • Jojima Y., Mihara Y., Suzuki S., Yokozeki K., Yamanaka S., Fudou R. (2004).Saccharibacter floricola gen. nov., sp. nov., a novel osmophilic acetic acid bacterium isolated from pollen. Int. J. Syst. Evol. Microbiol., 54: 2263–2267.

    Article  CAS  PubMed  Google Scholar 

  • Kimura M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol., 16: 111–120.

    Article  CAS  PubMed  Google Scholar 

  • Kumar S., Tamura K., Jakobsen I.B., Nei M. (2001). MEGA2: Molecular Evolutionary Genetics Analysis software, Bioinformatics, 17 (12): 1244–1245.

    Article  CAS  PubMed  Google Scholar 

  • Tersters K., Lisdiyanti P., Komagata K., Swings J. (2006). The familyAcetobacteraceae: The generaAcetobacter, Acidomonas, Asaia, Gluconacetobacter, Gluconobacter andKozakia. In: Dworkin M., Falcow S., Rosenberg E., Schleifer K.H., Stackebrands E., Eds, The Prokaryotes, Vol. 5, 3rd edn., Springer, New York, pp. 163–200.

    Google Scholar 

  • Loganathan P., Nair S. (2004).Swaminathania salitolerans gen. nov., sp. nov., a salt-tolerant, nitrogen-fixing and phosphate-solubilizing bacterium from wild rice (Porteresia coarctata Takeoka). Int. J. Syst. Evol. Microbiol., 54: 1185–1190.

    Article  CAS  PubMed  Google Scholar 

  • Moonmangmee D., Adachi O., Ano Y., Shinagawa E., Toyama H., Theeragool G., Lotong N., Matsushita K. (2000). Isolation and characterization of thermotolerantGluconobacter strains catalyzing oxidative fermentation at higher temperatures. Biosci. Biotech. Biochem., 64: 2306–2315.

    Article  CAS  Google Scholar 

  • Saitou N., Nei M. (1987). The neighboring-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4: 406–425.

    CAS  PubMed  Google Scholar 

  • Seearunruangchai A., Tanasupawat S., Keeratipibut S., Thawai C., Itoh T., Yamada Y. (2004). Identification of acetic acid bacteria isolated from fruits and related materials collected in Thailand. J. Gen. Appl. Microbiol., 50: 47–53.

    Article  CAS  PubMed  Google Scholar 

  • Skerman V.B.D., Mcgowan V., Sneath P.H.A. (1980). Approved lists of bacterial names. Int. J. Syst. Bacteriol., 30: 225–420.

    Article  Google Scholar 

  • Tamaoka J., Katayama-Fujimura Y., Kuraishi H. (1983). Analysis of bacterial menaquinone mixtures by high-performances liquid chromatography. J. Appl. Bacteriol., 54: 31–36.

    CAS  Google Scholar 

  • Tanasupawat S., Thawai C., Yukphan P., Moonmangmee D., Itoh T., Adachi O., Yamada Y. (2004).Gluconobacter thailandicus sp. nov., an acetic acid bacterium in the [alpha]-Proteobacteria. J. Gen. Appl. Microbiol., 50: 159–167.

    Article  CAS  PubMed  Google Scholar 

  • Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. (1997). The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res., 25: 4876–4882.

    Article  CAS  PubMed  Google Scholar 

  • Trcek J., Teuber M. (2002). Genetic restriction analysis of the 16S–23S rRNA internal transcribed spacer regions of the acetic acid bacteria. FEMS Microbiol. Lett., 208: 69–75.

    Article  CAS  PubMed  Google Scholar 

  • Yamada Y., Aida K., Uemura T. (1968). Distribution of ubiquinone 10 and 9 in acetic acid bacteria and its relation to the classification of generaGluconobacter andAcetobacter, especially of so-called intermediate strain. Agr. Biol. Chem., 32: 786–788.

    CAS  Google Scholar 

  • Yamada Y., Okada Y., Kondo K. (1976). Isolation and characterization of polarly flagellated intermediate strains in acetic acid bacteria. J. Gen. Appl. Microbiol., 22: 237–245.

    Article  Google Scholar 

  • Yukphan P., Malimas T., Potacharoen W., Tanasupawat S., Tanticharoen M., Yamada Y. (2005).Neoasaia chiangmaiensis gen. nov., sp. nov., a novel osmotolerant acetic acid bacterium in the a-proteobacteria. J. Gen. Appl. Microbiol., 51: 301–311.

    Article  CAS  PubMed  Google Scholar 

  • Yukphan P., Malimas T., Potacharoen W., Tanasupawat S., Tanticharoen M., Yamada Y. (2006).Neoasaia Yukphanet al. 2006;Neoasaia chiangmaiensis Yukphanet al. 2006. In List of New Names and New Combinations Previously Effectively, but Not Validly, Published. Validation List no. 108. Int. J. Syst. Evol. Microbiol., 56: 499–500.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ancharida Akaracharanya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kommanee, J., Akaracharanya, A., Tanasupawat, S. et al. Identification ofAcetobacter strains isolated in Thailand based on 16S–23S rRNA gene ITS restriction and 16S rRNA gene sequence analyses. Ann. Microbiol. 58, 319–324 (2008). https://doi.org/10.1007/BF03175337

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175337

Key words

Navigation