Skip to main content
Log in

Chemical composition, antibacterial and antifungal activities ofTrichoderma sp. growing in Tunisia

  • Applied Microbiology
  • Short Communications
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Trichoderma species are common soil-inhabiting fungi that have been developed as effective biocontrol agents against various phytopathogenic microorganisms. The chemical composition of butanolic extract prepared from cultivatedTrichoderma sp. was analysed using GC-FID and GC-MS. Six components were identified. Limonene, the terpenoid compound, was found to be the major component in the tested extract (92.6%). Antibacterial and antifungal activities were also investigated against five pathogenic Gram positive and Gram negative bacterial strains and five pathogenic fungi. In tested concentrations, the prepared extract showed positive antibacterial values, but no antifungal activity was detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Adams R.P., Ed. (1995). Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. Allured. Publ., Carol Stream, IL.

    Google Scholar 

  • Bauer A.W., Kirby W.M.M., Sherries J.C., Tuck M. (1966). Antibiotic susceptibility testing by a standardized disc method. Am. J. Clin. Pathol., 45: 493–496.

    CAS  PubMed  Google Scholar 

  • Bougatsos C., Meyer J.J.M., Magiatis P., Vagias C., Chinou I.B. (2003). Composition and antimicrobial activity of the essential oils ofHelichrysum kraussii Sch. Bip andHelichrysum rugulosum Less from South Africa. Flavour. Frag. J., 18: 48–51.

    Article  CAS  Google Scholar 

  • Burt S. (2004). Essential oils: their antibacterial properties and potential applications in foods — a review. Int. J. Food Microbiol., 94: 223–253.

    Article  CAS  PubMed  Google Scholar 

  • Calvet C., Pera J., Barea J.M. (1989). Interactions ofTrichoderma spp. withGlomus mosseae and two wilt pathogenic fungi. Agric. Ecosyst. Environ., 29: 59–65.

    Article  Google Scholar 

  • Canillac N., Mourey A. (2001). Antibacterial activity of the essential oil ofPicea excelsa on listeria, Staphylococcus aureus and coliform bacteria. Food Microbiol., 18: 261–268.

    Article  CAS  Google Scholar 

  • Cardoza R.E., Hermosa M.R., Vizcaino J.A., Sanz L., Monte E. Gutiérrez S. (2005). Secondary metabolites produced byTrichoderma and their importance in the biocontrol process. In: Mellado E., Barredo J.L., Eds, Microorganisms for Industrial Enzymes and Biocontrol. Research Signpost, ISBN: 81-308-0040-3, pp. 1–22.

  • Cardoza R.E., Vizcaíno J.A, Hermosa M.R., Sousa S., González F.J., Llobell A., Monte E., Gutiérrez S. (2006). Cloning and characterization of theerg1 gene ofTrichoderma harzianum: EVect of theerg1 silencing on ergosterol biosynthesis and resistance terbinafine. Fungal Genet. Biol., 43: 164–178.

    Article  CAS  PubMed  Google Scholar 

  • Chabbert Y.A. (1972). Les antibiotiques en bactériologie médicale. In: Daguet G.L., Chabbert Y.A., Eds, Techniques en Bactériologie, Tome 3, Flammarion Ed. Paris, p. 158.

    Google Scholar 

  • Chet I., Benhamou N., Haran S. (1998). Mycoparasitism and lytic enzymes. In: Harman G.E., Kubicek C.P., Eds,Trichoderma andGliocladium, vol. 2, Taylor and Francis Ltd., London, UK, pp. 153–172.

    Google Scholar 

  • Cimanga K., Kambu K., Tona L., Apers S., De Bruyne T., Hermans N., Totté J., Pieters L., Vlietinck A.J. (2002). Correlation between chemical composition and antibacterial activity of essential oils of some aromatic medicinal plants growing in the Democratic Republic of Congo. J. Ethnopharmacol., 79: 213–220.

    Article  CAS  PubMed  Google Scholar 

  • Corley D.G., Miller-Widerman M., Durley R.C. (1994). Isolation and structure of harzianum A: a new trichothecene fromTrichoderma harzianum. J. Nat. Prod., 57: 422–425.

    Article  CAS  PubMed  Google Scholar 

  • Cox S.D., Mann C.M., Markham J.L., Bell H.C., Gustafson J.E., Warmington J.R., Wyllie S.G. (2000). The mode of antimicrobial action of the essential oil fromMalaleuca alternifolia (tea tree oil). J. Appl. Bacteriol., 88: 170–175.

    CAS  Google Scholar 

  • Delaquis P.J., Stanich K., Girard B., Mazza G. (2002). Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. Int J. Food Microbiol., 74: 101–109.

    Article  CAS  PubMed  Google Scholar 

  • Elad Y., Chet I., Henis Y. (1982). Degradation of plant pathogenic fungi byTrichoderma harzianum. Can. J. Microbiol., 28: 719–725.

    Article  CAS  Google Scholar 

  • Ghannoum M.A., Rex J.H., Galgiani J.N. (1996). Susceptibility testing of fungi: current status of correlation ofin vitro data with clinical outcome. J. Clin. Microbiol., 34: 489–495.

    CAS  PubMed  Google Scholar 

  • Harman G.E., Howell C.R., Viterbo A., Chet I., Lorito M. (2004).Trichoderma species opportunistic, a virulent plant symbionts. Nat. Rev. Microbiol., 2: 43–56.

    Article  CAS  PubMed  Google Scholar 

  • Hichri F., Ben Jannet H., Cheriaa J., Jegham S., Mighri Z. (2003). Antibacterial activities of a few prepared derivatives of oleanolic acid and of other natural triterpenic compounds. C.R. Chim., 6: 473–483.

    CAS  Google Scholar 

  • Howell C.R. (2003). Mechanisms employed byTrichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis., 87: 4–10.

    Article  Google Scholar 

  • Hutchinson S.A., Gowan M.E. (1972). Identification and biological effects of volatile metabolites from cultures ofTrichoderma harzianum. T. Brit. Mycol. Soc., 59: 71–77.

    Article  CAS  Google Scholar 

  • Kim J., Marshall M.R., Wei C. (1995). Antibacterial activity of some essential oil components against five foodborne pathogens. J. Agric. Food Chem., 43: 2839–2845.

    Article  CAS  Google Scholar 

  • Klein D., Eveleigh D.E. (1998). Ecology ofTrichoderma. In: Kubicek C.P., Harman G.E., Eds,Trichoderma andGliocladium. Basic Biology, Taxonomy and Genetics, vol. 1, Taylor and Francis, London, pp. 57–73.

    Google Scholar 

  • Kokoska L., Polesny Z., Rada V., Nepovim A., Vanek T. (2002). Screening of some Siberian medicinal plants for antimicrobaial activity. J. Ethnopharmacol., 82: 51–53.

    Article  CAS  PubMed  Google Scholar 

  • Kubicek C.P., Mach R.L., Peterbauer C.K., Lorito M. (2001).Trichoderma: from genes to biocontrol. J. Plant Pathol., 83: 11–23.

    CAS  Google Scholar 

  • Lewis J.A., Papavizas G.C. (1987). Permeability changes in hyphae ofRhizoctonia solani induced by germling preparations ofTrichoderma andGliocladium, Phytopathology, 77: 699–702.

    Article  Google Scholar 

  • Marmonier A.A. (1987). Bactériologie médicale. Techniques usuelles. Antibiotiques, Technique de diffusion en gélose méthode des disques. SIMEP SA-PARIS, France, Chap. 4, pp. 238–244.

    Google Scholar 

  • May J., Chan C.H., King A., Williams L., French G.L. (2000). Time-kill studies of tea tree oils on clinical isolates. J. Antimicrob. Chemother., 45: 639–643.

    Article  CAS  PubMed  Google Scholar 

  • Morton H.E. (1983). Alcohols. In: Block S.S., Ed., Disinfection, Sterilization and Preservation. Lea and Febiger, Philadelphia, p. 225–239.

    Google Scholar 

  • Nielsen K.F., Grafenhan T., Zafari D., Thrane U. (2005). Trichothecene production byTrichoderma brevicompactum. J. Agric. Food Chem., 53: 8190–8196.

    Article  CAS  PubMed  Google Scholar 

  • Orgaz B., Kives J., Pedregosa A.M., Monistrol I.F., Laborda F., SanJosé C. (2006). Bacterial biofilm removal using fungal enzymes. Enzyme Microb. Technol., 40: 51–56.

    Article  CAS  Google Scholar 

  • Pauli A. (2001). Antimicrobial properties of essential oil constituents. Int. J. Aromather., 11 (3): 126–133.

    Article  Google Scholar 

  • Ronda L.A., Rybak M.J. (2001). Bactericidal activities of two daptomycin regimens against clinical strains of glycopeptide intermediate-resistantStaphylococcus aureus, vancomycin-resistantEnterococcus faecium and methicillin-resistantStaphylococcus aureus isolates in an in vitro pharmacodynamic model with simulated endocardial vegetations. Antimicrob. Agents Ch., 45 (2): 454–459.

    Article  Google Scholar 

  • Samuels G.J., (1996).Trichoderma: a review of biology and systematics of the genus. Mycol. Res., 100: 923–935.

    Article  Google Scholar 

  • Shibamoto T. (1987). Retention indices in essential oil analysis, In: Sandra P., Bicchi C., Eds, Cappilary Gas Chromatography in Essential oil, Dr. Alfred Heuthig, Verlag, Heidelberg, pp. 259–275.

    Google Scholar 

  • Sivan A., Chet I. (1993). Integrated control ofFusarium crown and root rot of tomato withTrichoderma harzianum in combination with methyl bromide or soil solarization. Crop. Prot., 12: 380–386.

    Article  CAS  Google Scholar 

  • Sivasithamparam K., Ghisalberti E. L. (1998). Secondary metabolism inTrichoderma andGliocladium. In: Kubicek C.P., Harman G. E., Eds,Trichoderma andGliocladium, vol. 1, Taylor & Francis, London, pp. 139–191.

    Google Scholar 

  • Smith-Palmer A., Stewart J., Fyfe L. (1998). Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Lett. Appl. Microbiol., 26: 118–122.

    Article  CAS  PubMed  Google Scholar 

  • Ultee A., Kets E.P.W., Smid E.J. (1999). Mechanisms of actions of carvacrol on the food-borne pathogenBacillus cereus. Appl. Environ. Microbiol., 65: 4606–4610.

    CAS  PubMed  Google Scholar 

  • Vanden Berghe D.A., Vlietinck A.J., (1991). In: Dey P.M., Harbone J.B., Hostettman K., Eds, Screening Methods for Antibacterial and Antiviral Agents from Higher Plants. Methods in Plant Piochemistry. Assays for Pioactivity, vol. 6, Academic Press, London, p. 47–69.

    Google Scholar 

  • Vargas Gil S., Pastor S., March G.J. (2006). Quantitative isolation of biocontrol agentsTrichoderma spp.,Gliocladium spp. and actinomycetes from soil with culture media. Microbiological Research (In press), doi: 10.1016/j.micres.2006.11.022

  • Vicente M.F., Cabello A., Platas A., Basilio M.T., Diez S., Dreikorn, R.A. (2001). Antimicrobial activity of ergokonin A from.Trichoderma longibrachiatum. J. Appl. Microbiol., 91: 806–813.

    Article  CAS  PubMed  Google Scholar 

  • Vizcaíno J.A., Sanz L., Basilio A., Vicente F., Gutiérrez S., Hermosa M.R., Monte E. (2005). Screening of antimicrobial activities inTrichoderma isolates representing threeTrichoderma sections. Mycol. Res., 109: 1397–1406.

    Article  PubMed  CAS  Google Scholar 

  • Yamano T., Hemmi S., Yamamoto L., Tsubaki K. (1970). Trichoviridin. A new antibiotic. Japanese Kokai 15435. Chemical Abstracts, 73, 65093.

    Google Scholar 

  • Yayli N., Yacar A., Gülec C., Usta A., Kolayli S., Coskuncelebi K., Karaoglu S. (2005). Composition and antimicrobial activity of essential oils fromCentaurea sessilis andCentaurea armena. Phytochemistry, 66: 1741–1745.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zine Mighri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khethr, F.B.H., Ammar, S., Saïdana, D. et al. Chemical composition, antibacterial and antifungal activities ofTrichoderma sp. growing in Tunisia. Ann. Microbiol. 58, 303–308 (2008). https://doi.org/10.1007/BF03175334

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175334

Key words

Navigation