Skip to main content
Log in

Comparison of two marine sponge-associatedPenicillium strains DQ25 and SC10: differences in secondary metabolites and their bioactivities

  • Physiology and Metabolism
  • Original Articles
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Two strains ofPenicillium, DQ25 and SC10, isolated from marine spongeHaliclona angulata (Bowerbank) andHymeniacidon sp. respectively, were subjected to stationary cultivation under GYP medium for 30 days. The fermentation extracts were undergone bioactivities assays against human pathogens, phytopathogenic fungi and brine shrimp (Artemia salina). Bioassays-guided compounds isolation was performed by Silica gel columns and Sephadex LH-20 chromatography. Spectroscopic methods were used to structures elucidation of the compounds. Results showed the activities of secondary metabolites of strain DQ25 were generally stronger than that of strain SC10. Major bioactive molecules isolated from strain DQ25 were a 1,4-naphthoquinone derivative and an unidentified alkaloid. The two components were not isolated from the extract of strain SC10. ITS sequences revealed that these two species have the greatest similarity withPenicillium vinaceum andPenicillium granulatum respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aniszewski T. (2007). Alkaloids-Secrets of Life. Alkaloid Chemistry, Biological Significance, Applications and Ecological Role. Elsevier B.V., Amsterdam, pp. 156–157.

    Google Scholar 

  • Aoki M., Itezono Y., Shirai H., Nakayama N., Sadai A., Tanaka Y., Tamaguchi A., Shimma N., Yokose K., Seto H. (1991). Structure of a novel phospholipase C inhibitor, Vinaxanthone (Ro 09-1450), produced byPenicillium vinaceum. Tetrahedron Lett., 32: 4737–4740.

    Article  CAS  Google Scholar 

  • Baker P.W., Kennedy J., Dobson A.D., Marchesi J.R. (2009). Phylogenetic diversity and antimicrobial activities of fungi associated withHaliclona simulans isolated from Irish coastal waters. Mar. Biotechnol., 11: 540–547.

    Article  CAS  PubMed  Google Scholar 

  • Carballo J.L., Hernández-Inda Z.L., Pérez P., García-Grávalos M.D. (2002). A comparison between two brine shrimp assays to detectin vitro cytotoxicity in marine natural products. BMC Biotechnol., 2: 17. http://www. biomedcentral.com/1472-6750/2/17

    Article  PubMed  Google Scholar 

  • Ciegler A., Hou C.T. (1970). Isolation of viridicatin fromPenicillium palitans. Arch. Mikrobiol., 73: 261–267.

    Article  CAS  PubMed  Google Scholar 

  • Ciegler A., Kurtzman C.P. (1970). Penicillic acid production by blue-eye fungi on various agricultural commodities. Appl. Microbiol., 20: 761–764.

    CAS  PubMed  Google Scholar 

  • Clark R.J., Garson M.J., Hooper J.N. (2001). Antifungal alkyl amino alcohols from the tropical marine spongeHaliclona n. sp. J. Nat.Prod., 64: 1568–1571.

    Article  CAS  PubMed  Google Scholar 

  • Currie J.N., Thom C. (1915). An oxalic acid producingPenicillium. J. Biol. Chem., 22: 287–293.

    CAS  Google Scholar 

  • Dalsgaard P.W., Blunt J.W., Munro M.H., Frisvad J.C., Christophersen C. (2005). Communesins G and H, new alkaloids from the psychrotolerant fungusPenicillium rivulum. J. Nat. Prod., 68: 258–261.

    Article  CAS  PubMed  Google Scholar 

  • Ding L., Qin S., Li F., Chi X., Laatsch H. (2008). Isolation, antimicrobial activity, and metabolites of fungusCladosporium sp. associated with red algaPorphyra yezoensis. Curr. Microbiol., 56: 229–235.

    Article  CAS  PubMed  Google Scholar 

  • Faulkner D.J., Harper M.K., Salomon C.E., Schmidt E.W. (1999). Localisation of bioactive metabolites in marine sponges. In: Hooper J.N.A., Ed., Proceedings of 5th International Sponge Symposium. Mem. Qld. Mus., 44: pp. 167–173.

  • Frisvad J.C., Smedsgaard J., Larsen T.O., Samson R.A. (2004). Mycotoxins, drugs and other extrolites produced by species inPenicillium subgenusPenicillium. Stud. Mycol., 49: 201–241.

    Article  Google Scholar 

  • Frisvad J.C., Filtenborg O. (1983). Classification of terverticillate Penicillia based on profiles of mycotoxins and other secondary metabolites. Appl. Environ. Microbiol., 46: 1301–1310.

    CAS  PubMed  Google Scholar 

  • Jadulco R.C. (2002). Isolation and structure elucidation of bioactive secondary metabolites from marine sponges and sponge-derived fungi. Dissertation of University of Wuerzburg, Germany.

  • Kapadia G.J., Balasubramanian V., Tokuda H., Konoshima T., Takasaki M., Koyama J., Tagahaya K., Nishino H. (1997). Anti-tumor promoting effects of naphthoquinone derivatives on short term Epstein-Barr early antigen activation assay and in mouse skin carcinogenesis. Cancer Lett.,113: 47–53.

    Article  CAS  PubMed  Google Scholar 

  • Klich M.A. (1998). Soil fungi of some low-altitude desert cotton fields and ability of their extracts to inhibitAspergillus flavus. Mycopathologia, 142: 97–100.

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Wang G. (2009). Diversity of fungal isolates from three Hawaiian marine sponges. Microbiol. Res., 164: 233–241.

    Article  CAS  PubMed  Google Scholar 

  • LimnaMol V.P., Raveendran T.V., Parameswaran P.S. (2009). Antifouling activity exhibited by secondary metabolites of the marine sponge,Haliclona exigua (Kirkpatrick). Int. Biodeterior. Biodegrad., 63: 67–72.

    Article  CAS  Google Scholar 

  • Meazza G., Dayan F.E., Wedge D.E. (2003). Activity of quinones onColletotrichum species. J. Agric. Food Chem., 51: 3824–3828.

    Article  CAS  PubMed  Google Scholar 

  • Raeder U., Broda P. (1985). Rapid preparation of DNA from filamentous fungi. Lett. Appl. Microbiol., 1: 17–20.

    Article  CAS  Google Scholar 

  • Raper K.B., Thom C. (1949). A Manual of the Penicillia. Williams & Wilkins Co., Baltimore.

    Google Scholar 

  • Rezanka T., Rezanka P., Sigler K. (2008). A biaryl xanthone derivative having axial chirality fromPenicillium vinaceum. J. Nat. Prod., 71: 820–823.

    Article  CAS  PubMed  Google Scholar 

  • Schiaparelli S., Albertelli G., Cattaneo-Vietti R. (2003). The epibiotic assembly on the spongeHaliclona dancoi (Topsent, 1901) at Terra Nova Bay (Antarctica, Ross Sea). Polar. Biol., 26: 342–347.

    Google Scholar 

  • Sera Y, Adachi K, Fujii K, Shizuri Y. (2002). Isolation of haliclonamides: new peptides as antifouling substances from a marine sponge species,Haliclona. Mar. Biotechnol., 4: 441–446.

    Article  CAS  PubMed  Google Scholar 

  • Sette L.D., Passarini M. R Z., Delarmelina C., Salati F., Duarte M.C.T. (2006). Molecular characterization and antimicrobial activity of endophytic fungi from coffee plants. World J. Microbiol. Biotechnol., 22: 1185–1195.

    Article  CAS  Google Scholar 

  • Shigemori H., Bae M.A., Yazawa K., Sasaki T., Kobayashi J. (1992). Alteramide A, a new tetracyclic alkaloid from a bacteriumAlteromonas sp. associated with the marine spongeHalichondria okadai. J. Org. Chem., 57: 4317–4320.

    Article  CAS  Google Scholar 

  • Solov’eva T.F., Reshetilova T.A., Baskunov B.P., Griforian K.M., Kozlovskiî A.G. (1995). Alkaloids fromPenicillium species fungi isolated from food products. Prikl. Biokhim. Mikrobiol., 31: 545–550.

    PubMed  Google Scholar 

  • Unson M.D., Faulkner D.J. (1993). Cyanobacterial symbiont biosynthesis of chlorinated metabolites fromDysidea herbacea (Porifera). Experientia (Basel), 49: 349–353.

    CAS  Google Scholar 

  • Volk C.A., Köck M. (2004). Viscosaline: new 3-alkyl pyridinium alkaloid from the Arctic spongeHaliclona viscose. Org. Biomol. Chem., 13: 1827–1830.

    Article  Google Scholar 

  • Wischik C.M., Horsley D., Rickard J.E., Harrington C.R. (2005). Napthoquinone derivatives as inhibitors of Tau aggregation for the treatment of Alzheimer’s and related neurodegenerative disorders. US patent: 20050107472 A1.

  • Zheng L., Yan X., Han X., Chen H., Lin W., Lee F.S., Wang X. (2006). Identification of norharman as the cytotoxic compound produced by the sponge (Hymeniacidon perleve)-associated marine bacteriumPseudoalteromonas piscicida and its apoptotic effect on cancer cells. Biotechnol. Appl. Biochem., 44: 135–142.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rongbian Wei or Song Qin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, R., Li, F., Song, R. et al. Comparison of two marine sponge-associatedPenicillium strains DQ25 and SC10: differences in secondary metabolites and their bioactivities. Ann. Microbiol. 59, 579–585 (2009). https://doi.org/10.1007/BF03175149

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175149

Key words

Navigation