Skip to main content
Log in

High salt-tolerant protease from a potential biocontrol agentBacillus pumilus M3-16

  • Industrial Microbiology
  • Original Articles
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

In this paper, we investigate the characterization and evaluation of the antifungal protease activity from a halotolerant strain M3-16 ofBacillus pumilus, earlier isolated from a shallow salt lake in Tunisia. Protease enzyme was highly induced by the pathogen testedin vitro (27.4 U/ml). This is the first report on high salt-tolerant protease fromB. Pumilus, since it was active at high salinity (from 5 to 30% NaCl, w/v) as well as in the absence of salinity. This enzyme showed optimal activity at 60 °C and pH 8. At 80 °C and 30 min, the enzyme retained up to 91% and it showed stability over a wide pH range (from pH 5 to 11). The enzyme was found to be monomer with an estimated molecular mass of 31 kDa. The amino acid sequence showed high similarity (94%) to ATP-dependent protease fromB. Pumilus strain ATCC 7061. Thus, our alkaline thermostable and high salt-tolerant protease induced by a phytopathogenic fungus, could be useful for application in diverse areas such as biotechnology alimentary and agronomy industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams M.W.W., Kelly R.M. (1995). Enzymes from microorganisms in extreme environments. Chem. Eng. News., 73: 32–42.

    CAS  Google Scholar 

  • Adinarayana K., Bapi-Raju K.V.V.S.N., Ellaiah P. (2004). Investigation on alkaline protease production withBacillus subtilis PE-11 immobilized in calcium alginate gel beads. Process Biochem., 39 (11): 1331–1339.

    Article  CAS  Google Scholar 

  • Banerjee V., Saani K., Azmi W., Soni R. (1999). Thermostable alkaline protease fromBacillus brevis and its characterization as a laundry additive. Proc. Biochem., 35: 213–219.

    Article  CAS  Google Scholar 

  • Coronado M.J., Vargas C., Mellado E., Tego G., Drainas C., Nieto J.J. (2000). Thea-amylase gene amyH of the moderate halophileHalomonas meridiana: cloning and molecular characterization. Microbiology, 146: 861–868.

    CAS  PubMed  Google Scholar 

  • Dhandapani R., Vijiayragavan R. (1994). Production of thermophilic extracellular alkaline protease byBacillus strearo-thermophilus AP-4. World J. Microbiol. Biothechnol., 10: 33–35.

    Article  CAS  Google Scholar 

  • Essghaier B., Fardeau M.L., Cayol J.L., Hajlaoui M.R., Boudabous A., Jijakli H., Sadfi-Zouaoui N. (2009). Biological control of grey mould in strawberry fruits by halophilic bacteria. J. Appl. Microbiol., 106: 833–846.

    Article  CAS  PubMed  Google Scholar 

  • Ghorbel B., Sellami-Kamoun A., Nasri M. (2003). Stability studies of protease fromBacillus cereus BG1. Enzyme Microbiol. Technol., 32: 513–608.

    Article  CAS  Google Scholar 

  • Hiraga K., Nishikata Y., Namwong S., Tanasupawat S., Takada K., Oda K. (2005). Purification and characterization of serine proteinase from a halophilic bacterium,Filobacillus sp. RF2-5. Biosci. Biotechnol. Biochem., 69 (1): 38–44.

    Article  CAS  PubMed  Google Scholar 

  • Kaur M., Dhillon S., Chaudhary K., Singh R. (1998). Production, purification and characterization of thermostable alkaline protease fromBacillus polymyxa. Indian J. Microbiol., 38: 63–67.

    Google Scholar 

  • Kumar C.G. (2002). Purification and characterization of a thermostable alkaline protease from alkalophilicBacillus pumilus. Lett. Appl. Microbiol., 34 (5): 13–17.

    Article  CAS  PubMed  Google Scholar 

  • Laemmli U.K. (1970). Cleavage on structural proteins during the assembly of the head of bacteriophage T4. Nature, 227:680–685.

    Article  CAS  PubMed  Google Scholar 

  • Liu Y.G., Huang N. (1998). Efficient amplification of insert end sequences from bacterial artificial chromosome clones by thermal asymmetric interlaced PCR. Plant. Mol. Biol. Rep., 16: 175–181.

    Article  CAS  Google Scholar 

  • Nascimento W.C.A., Martins M.L.L. (2004). Production and properties of an extracellular protease from thermophilicBacillus sp. Braz. J. Microbiol., 35: 91–96.

    Article  Google Scholar 

  • Olayjuyigbe F.M., Ajele J.O. (2005). Production dynamics of extracellular protease fromBacillus species. Afr. J. Biotech., 4 (8): 776–779.

    Google Scholar 

  • Patel R., Dodia M., Satya P., Singh S.P. (2005). Extracellular alkaline protease from a newly isolated haloalkaliphilicBacillus sp.: Production and optimization. Process Biochem., 40: 3569–3575.

    Article  CAS  Google Scholar 

  • Rao M.B., Tanksale A.M., Mohini S.G., Deshpande V.V. (1998). Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev., 62: 597–635.

    CAS  Google Scholar 

  • Rothschild L.J., Mancinelli R.L. (2001). Life in extreme environments. Nature, 409: 1092–1101.

    Article  CAS  PubMed  Google Scholar 

  • Sadfi-Zouaoui N., Essghaier B., Hajlaoui M.R., Fardeau M.L., Cayol J.L., Ollivier B., Boudabous A. (2008). Ability of moderately halophilic bacteria to control grey mould disease on tomato fruits. J. Phytopathol., 156: 42–52.

    CAS  Google Scholar 

  • Schisler D.A., Slinnger P.J., Behle R.W., Jackson M.A. (2004). Formulation ofBacillus spp. for biological control of plant diseases. Phytopathology, 94: 1267–1271.

    Article  CAS  PubMed  Google Scholar 

  • Setyorini E., Takenaka S., Murakami S., Aoki K. (2006). Purification and characterization of two novel halotolerant extracellular proteases fromBacillus subtilis strain FP-133. Biosci. Biotech. Biochem., 70 (2): 433–440.

    Article  CAS  Google Scholar 

  • Siadiqui I.A., Haas D., Heeb S. (2005). Extracellular protease ofPseudomonas fluorescens CHAO, a biocontrol activity against the root-knot nematode meloidogyne incognita. Appl. Environ. Microbiol., 71: 5646–5649.

    Article  Google Scholar 

  • Smaali M.I., Gargouri M., Limam F., Fattouch S., Maugard T., Legoy M.D., Marzouki N. (2003). Production, purification and biochemical characterization of two β-glucosidases fromSclerotinia sclerotiorum. Appl. Biochem. Biotech., 11 (1): 29–40.

    Google Scholar 

  • Sumantha A., Larroche C., Pandey A. (2006). Microbiology and industrial biotechnology of food-grade proteases: a perspective. Food. Technol. Biotechnol., 44 (2): 211–220.

    CAS  Google Scholar 

  • Thumar J., Singh S.P. (2007). Two-step purification of a highly thermostable alkaline protease from salt-tolerant alkaliphilicStreptomyces clavuligerus strain Mit-1. J. Chromat. B., 854: 198–203.

    Article  CAS  Google Scholar 

  • Tian B.Y., Li N., Lian L.H., Liu J.W., Wang J.K., Zhang K.Q. (2006). Cloning, expression and deletion of the cuticle-degrading protease BLG4 from nematophagous bacteriumBrevibacillus laterosporus G4. Arch. Microbiol., 186: 297–305.

    Article  CAS  PubMed  Google Scholar 

  • Wang S.L., Kao T.Y., Wang C.L., Yer Y.H., Cherr M.K., Cher Y.H. (2006). A solvent stable metalloprotease produced byBacillus sp. TKU004 and its application in the deproteinization of squid pen fo β-chitin preparation. Enzyme Microbiol. Technol., 39: 724–731.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najla Sadfi-Zouaoui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Essghaier, B., Bejji, M., Jijakli, H. et al. High salt-tolerant protease from a potential biocontrol agentBacillus pumilus M3-16. Ann. Microbiol. 59, 553–558 (2009). https://doi.org/10.1007/BF03175145

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175145

Key words

Navigation