Skip to main content
Log in

Infinite dimensional parametric optimal control problems

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper we study parametric optimal control problems monitored by nonlinear evolution equations. The parameter appears in all the data, including the nonlinear operator. First we show that for every value of the parameter, the optimal control problem has a solution. Then we study how these solutions as well as the value of the problem respond to changes in the parameter. Finally, we work out in detail two examples of nonlinear parabolic optimal control systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Attouch, Variational Convergence for Functions and Operators. Pitman, London, 1984.

    MATH  Google Scholar 

  2. E. Balder, Necessary and sufficient conditions forL 1-strong-weak lower semicontinuity of integral functionals. Nonlinear Anal.-TMA,11 (1987), 1399–1404.

    Article  MATH  MathSciNet  Google Scholar 

  3. V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoof International Publishing, Leyden, The Netherlands, 1976.

    MATH  Google Scholar 

  4. M. Benatti, On the convergence of the dual variabale in optimal control problems. J. Optim. Theory Appl.,34 (1981), 263–278.

    Article  MathSciNet  Google Scholar 

  5. H. Brezis, Operateurs Maximaux Monotones et Semigroupes de Contractions dans les Espaces de Hilbert. North Holland, Amsterdam, 1973.

    Google Scholar 

  6. G. Buttazzo and G. Dal Maso, Γ-convergence and optimal control problems. J. Optim. Theory Appl.,38 (1982), 385–407.

    Article  MATH  MathSciNet  Google Scholar 

  7. O. Carja, On variational perturbations of control problems: Minimum-time problem and minimum effort problem. J. Optim. Theory Appl.,44 (1984), 407–433.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Crandall and J. Nohel, An abstract functional differential equation and a related Volterra equation. Israel J. Math.,29 (1978), 313–328.

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Defranceschi,G-convergence of cyclically monotone operators. Asymptotic Anal.,2 (1989), 21–37.

    MATH  MathSciNet  Google Scholar 

  10. N. Dunford and J. Schwarts, Linear Operators I. Wiley, New York, 1958.

    MATH  Google Scholar 

  11. I. Ekeland and R. Temam, Convex Analysis and Variational Problems. North Holland, Amsterdam, 1976.

    MATH  Google Scholar 

  12. A. Ioffe and V. Tichomirov, Theory of Extermal Problems. North Holland, Amsterdam, 1979.

    Google Scholar 

  13. E. Klein and A. Thompson, Theory of Correspondences. Wiley, New York, 1984.

    MATH  Google Scholar 

  14. A. Kolpakov,G-convergence of a class of evolution operators. Siberian Math. J.,29 (1988), 233–244.

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Langenbach, Monotone Potentialoperatoren in Theorie und Anwendung. VEB Dt. Verl. der Wiss., Berlin, 1976.

    MATH  Google Scholar 

  16. P. Marcellini and C. Sbordone, Dualità e perturbazioni di funzionali integrali. Ricerche Mat.,26 (1977), 383–421.

    MATH  MathSciNet  Google Scholar 

  17. U. Mosco, On the continuity of the Young-Fenchel transform. J. Math. Anal. Appl.,35 (1971), 518–535.

    Article  MATH  MathSciNet  Google Scholar 

  18. E. Nagy, A theorem on compact embedding for functions with values in an infinite dimensional Hilbert space. Ann. Univ. Sci. Budapest, Eötvos Sect. Math.,29 (1986), 243–245.

    Google Scholar 

  19. N.S. Papageorgiou, Sensitivity analysis of evolution inclusions and its application to the variatonal stability of optimal control problems. Houston J. Math.,16 (1990), 509–522.

    MATH  MathSciNet  Google Scholar 

  20. N.S. Pagageorgiou, A convergence result for a sequence of distributed parameter optimal control problems. J. Optim. Theory Appl.,68 (1991), 305–320.

    Article  MathSciNet  Google Scholar 

  21. N.S. Papageorgiou, On the dependence of solutions and optimal solutions of control problems on the control constraint set. J. Math. Anal. Appl.,158 (1991), 427–447.

    Article  MATH  MathSciNet  Google Scholar 

  22. N.S. Papageorgiou, Continuous dependence results for a class of evolution inclusions. Proc. Edinburgh Math. Soc.,35 (1992), 139–158.

    Article  MATH  MathSciNet  Google Scholar 

  23. N.S. Papageorgiou, Convergence theorems for Banach space valued integrable multifunctions. Internat. J. Math. Sci.,10 (1987), 433–442.

    Article  MATH  Google Scholar 

  24. G. Pieri, Variational perturbations of the linear-quadratic problem. J. Optim. Theory Appl.,22 (1977), 63–77.

    Article  MATH  MathSciNet  Google Scholar 

  25. K.M. Przyluski, Remarks on continuous dependence of an optimal control on parameters. Game Theory and Mathematical Economics (eds. O. Moeschlin and D. Pallashke), North Holland, Amsterdam, 1981, 331–337.

    Google Scholar 

  26. A. Salvadori, On theM-convergence for integral functionals onL p X . Atti Sem. Mat. Fis. Univ. Modena,33 (1984), 137–154.

    MathSciNet  Google Scholar 

  27. J. Sokolowski, Optimal control in coefficients for weak variational problems in Hilbert space. Appl. Math. Optim.,7 (1981), 283–293.

    Article  MATH  MathSciNet  Google Scholar 

  28. S. Spagnolo, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche. Ann. Scuola Norm. Sup. Pisa,22 (1968), 571–597.

    Google Scholar 

  29. G. Stassinopoulos and R. Vinter, Continuous dependence of solutions of a differential inclusion on the right-hand side with applications to stability of optimal control problems. SIAM J. Control Optim.,17 (1979), 432–449.

    Article  MATH  MathSciNet  Google Scholar 

  30. D. Wagner, Survey of measurable selection theorems. SIAM J. Control Optim.,15 (1977), 859–903.

    Article  MATH  Google Scholar 

  31. E. Zeidler, Nonlinear Functional Analysis and its Applications II. Springer, New York, 1990.

    Google Scholar 

  32. V. Zhikov, S. Kozlov and O. Oleinik,G-convergence of parabolic operators. Russian Math. Surveys,36 (1981), 9–60.

    Article  MATH  MathSciNet  Google Scholar 

  33. T. Zolezzi, Variational stability and well-posedness in the time optimal control of ordinary differential equations. Mathematical Control Theory, Banach Center Publ., Vol.14, Warsaw, 1985, 611–623.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Revised version.

Partially supported by the National Science Foundation under grant DMS-91-11794.

About this article

Cite this article

Aizicovici, S., Papageorgiou, N.S. Infinite dimensional parametric optimal control problems. Japan J. Indust. Appl. Math. 10, 307 (1993). https://doi.org/10.1007/BF03167579

Download citation

  • Received:

  • DOI: https://doi.org/10.1007/BF03167579

Key words

Navigation