Skip to main content
Log in

On the interior layer appearing in the similarity solutions of the Navier-Stokes equations

Dedicated to Professors Masayasu Mimura and Takaaki Nishida on their sixtieth birthdays

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

We consider a special class of similarity solutions of the stationary Navier-Stokes equations and prove the existence of the solution for all the Reynolds numbers. We further prove that the solution exhibits interior and boundary layers as the Reynolds number tends to +∞ and −∞, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.L. Allgower and K. Georg, Numerical Continuation Methods. Springer, (1990).

  2. W.-J. Beyn, Numerical methods for dynamical systems. Advances in Numerical Analysis (ed. W. Light), Clarendon Press, 1991, 175–236.

  3. J.F. Brady and A. Acrivos, Steady flow in a channel or tube with an accelerating surface velocity. An exact solution to the Navier-Stokes equations with reverse flow. J. Fluid Mech.,112 (1981), 127–150.

    Article  MATH  MathSciNet  Google Scholar 

  4. S.M. Cox, Analysis of steady flow in a channel with one porous wall, or with accelerating walls. SIAM J. Appl. Math.,51 (1991), 429–438.

    Article  MATH  MathSciNet  Google Scholar 

  5. W. J.F. Govaerts, Numerical Methods for Bifurcations of Dynamical Equilibria. SIAM, 2000.

  6. R.E. Grundy and H.R. Allen, The asymptotic solution of a family of boundary value problems involving exponentially small terms. IMA J. Appl. Math.,53 (1994), 151–168.

    Article  MATH  MathSciNet  Google Scholar 

  7. R.E. Grundy and R. McLaughlin, Three-dimensional blow-up solutions of the Navier-Stokes equations. IMA J. Appl. Math.,63 (1999), 287–306.

    Article  MATH  MathSciNet  Google Scholar 

  8. S.P. Hastings, An existence theorem for a problem from boundary layer theory. Arch. Rat. Mech. Anal.,33 (1969), 103–109.

    Article  MATH  MathSciNet  Google Scholar 

  9. L. Howarth, Laminar boundary layers. Handbuch der Physik, VIII/1, 1959, 264–350.

  10. K. Hiemenz, Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszlynder. Dinglers J.,326 (1911), 321–324, 344–348, 357–362, 372–376, 391–393, 407–410.

    Google Scholar 

  11. T.-W. Hwang and C.-A. Wang, On multiple solutions for Berman’s problem. Proc. R. Soc. Edinburgh,121A (1992), 219–230.

    MathSciNet  Google Scholar 

  12. H. Ikeda, M. Mimura and H. Okamoto, A singular perturbation problem arising in Oseen’s spiral flows. Japan J. Indust. Appl. Math.,18 (2001), 393–403.

    Article  MATH  MathSciNet  Google Scholar 

  13. H.B. Keller, Lectures on Numerical Methods in Bifurcation Theory. Tata Institute of Fundamental Research No. 79, Springer Verlag, 1987.

  14. J.R. King and S.M. Cox, Asymptotic analysis of the steady-state and time-dependent Berman problem. Preprint.

  15. M. Kubicek and M. Marek, Computational Methods in Bifurcation Theory and Dissipative Structure. Springer Verlag, 1983.

  16. O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, 1963, 32.

  17. C.-C. Lan, On functional-differential equations and some laminar boundary layer problems. Arch. Rat. Mech. Anal.,42 (1971), 24–39.

    Article  MATH  MathSciNet  Google Scholar 

  18. C. Lu, A.D. MacGillivray and S.P. Hastings, Asymptotic behavior of solutions of a similarity equation for laminar flows in channels with porous walls. IMA J. Appl. Math.,49 (1992), 139–162.

    Article  MATH  MathSciNet  Google Scholar 

  19. J.B. McLeod, Laminar flow in a porous channel. Asymptotics beyond All Orders (eds. H. Segur, S. Tanveer and H. Levine), Plenum Press, 1991, 255–266.

  20. M. Nagayama, H. Okamoto and J. Zhu, On the blow-up of some similarity solutions of the Navier-Stokes equations. To appear in Quaderni di Matematica.

  21. H. Okamoto, Localization of singularities in inviscid limit — numerical examples. Proceedings of Navier-Stokes Equations: Theory and Numerical Methods (ed. R. Salvi), Longman, Pitman Research Notes in Mathematics Series388, 1998, 220–236.

  22. H. Okamoto and J. Zhu, Some similarity solutions of the Navier-Stokes equations and related topics. Taiwanese J. Math.,4 (2000), 65–103.

    MATH  MathSciNet  Google Scholar 

  23. W.A. Robinson, The existence of multiple solutions for the laminar flow in a uniformly porous channel with suction at both walls. J. Eng. Math.,10 (1976), 23–40.

    Article  MATH  Google Scholar 

  24. K.-G. Shih, On the existence of solutions of an equation arising in the theory of laminar flow in a uniformly porous channel with injection. SIAM J. Appl. Math.,47 (1987), 526–533.

    Article  MATH  MathSciNet  Google Scholar 

  25. F.M. Skalak and C.-Y. Wang, On the nonunique solutions of laminar flow through a porous tube or channel. SIAM J. Appl. Math.,34 (1978), 535–544.

    Article  MATH  MathSciNet  Google Scholar 

  26. C.L. Taylor, W.H.H. Banks, M.B. Zaturska and P.G. Drazin, Three dimensional flow in a porous channel. Quart. J. Mech. Appl. Math.,44 (1991), 105–133.

    Article  MATH  MathSciNet  Google Scholar 

  27. C.-Y. Wang, The three-dimensional flow due to a stretching flat surface. Phys. Fluid,27 (1984), 1915–1917.

    Article  MATH  Google Scholar 

  28. E.B.B. Watson, W.H.H. Banks, M.B. Zaturska and P.G. Drazin, On transition to chaos in two-dimensional channel flow symmetrically driven by accelerating walls. J. Fluid Mech.,212 (1990), 451–485.

    Article  MATH  MathSciNet  Google Scholar 

  29. P. Watson, W.H.H. Banks, M.B. Zaturska and P.G. Drazin, Laminar channel flow driven by accelerating walls. Eur. J. Appl. Math.,2 (1991), 359–385.

    Article  MATH  MathSciNet  Google Scholar 

  30. H. Weyl, On the differential equations of the simplest boundary-layer problems. Ann. Math.,43 (1942), 381–407.

    Article  MathSciNet  Google Scholar 

  31. M.B. Zaturska, P.G. Drazin and W.H.H. Banks, On the flow of a viscous fluid driven along a channel by suction at porous walls. Fluid Dynam. Res.,4 (1988), 151–178.

    Article  Google Scholar 

  32. J. Zhu, Numerical study of stagnation-point flows of incompressible fluid. Japan J. Indust. Appl. Math.,17 (2000), 209–228.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partly supported by the Grant-in-Aid for Scientific Research from JSPS #12740062.

Partly supported by the Grant-in-Aid for Scientific Research from JSPS #11304005.

About this article

Cite this article

Nagayama, M., Okamoto, H. On the interior layer appearing in the similarity solutions of the Navier-Stokes equations. Japan J. Indust. Appl. Math. 19, 277–300 (2002). https://doi.org/10.1007/BF03167457

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167457

Key words

Navigation