Skip to main content
Log in

High-frequency 180 GHz PELDOR

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

For aromatic organic radicals, pulsed electron-electron double resonance (PELDOR) experiments at high magnetic fields offer the possibility to achieve orientation-selective pumping and detection that could allow one not only to determine the distance between paramagnetic species but also their relative orientation with respect to the interconnecting dipolar axis. We present a PELDOR two-frequency setup that was introduced into our homebuilt 180 GHz pulsed electron paramagnetic resonance (EPR) spectrometer and we discuss its technical and experimental features. The capability of 180 GHz PELDOR has been tested using the three-pulse ELDOR sequence on the protein RNR-R2 (ribonucleotide reductase) fromEscherichia coli, which contains two tyrosyl radicals at a distance of 3.3 nm. At 180 GHz, orientation selectivity is observed and the modulation frequency was found in good agreement with theoretical predictions, which take into account the relative orientation of the radicals from X-ray data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Milov A.D., Ponomarev A.B., Tsvetkov Yu.D.: Chem. Phys. Lett.110, 67 (1984)

    Article  ADS  Google Scholar 

  2. Jeschke G.: Macromol. Rapid Commun.23, 227–246 (2002)

    Article  Google Scholar 

  3. Hara H., Kawamori A., Astashkin A.V., Ono T.: Biochim. Biophys. Acta1276, 140–146 (1996)

    Article  Google Scholar 

  4. Elsässer C., Brecht M., Bittl R.: J. Am. Chem. Soc.124, 12606–12611 (2002)

    Article  Google Scholar 

  5. Bennati M., Weber A., Antonic E., Perlstein D., Robblee J., Stubbe J.: J. Am. Chem. Soc.125, 14988–14989 (2003)

    Article  Google Scholar 

  6. Schiemann O., Weber A., Edwards T.E., Prisner T.F., Sigurdsson S.T.: J. Am. Chem. Soc.125, 3434–3435 (2003)

    Article  Google Scholar 

  7. Schiemann O., Piton N., Mu Y., Stock G., Engels J.W., Prisner T.F.: J. Am. Chem. Soc.126, 5722–5729 (2004)

    Article  Google Scholar 

  8. Jeschke G., Wegener C., Nietschke M., Jung H., Steinhoff H.J.: Biophys. J.86, 2551–2557 (2004)

    Article  ADS  Google Scholar 

  9. Carl P., Heilig R., Maier D.C., Höfer P., Schmalbein D.: Bruker Rep.154, 35–37 (2004)

    Google Scholar 

  10. Rohrer M., Brügmann G., Kinzer B., Prisner T.F.: Appl. Magn. Reson.21, 257–274 (2001)

    Article  Google Scholar 

  11. Högborn M., Galander M., Andersson M., Kolberg M., Hofbauer W., Lassmann G., Nordlund P., Lendzian F.: Proc. Natl. Acad. Sci. USA100, 3209–3214 (2003)

    Article  ADS  Google Scholar 

  12. Larsen R.G., Singel D.J.: J. Chem. Phys.98, 5134–5146 (1993)

    Article  ADS  Google Scholar 

  13. Gerfen G., Bellew B.F., Un S., Bollinger J.M., Stubbe J., Griffin R.G., Singel D.: J. Am. Chem. Soc.115, 6420–6421 (1993)

    Article  Google Scholar 

  14. Milov A.D., Nanmov B.D., Tsvetkov Yu.D.: Appl. Magn. Reson.26, 587 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denysenkov, V.P., Prisner, T.F., Stubbe, J. et al. High-frequency 180 GHz PELDOR. Appl. Magn. Reson. 29, 375–384 (2005). https://doi.org/10.1007/BF03167024

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167024

Keywords

Navigation