Skip to main content
Log in

In vivo oximetry by a pulsed longitudinally detected ESR spectrometer

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

By using a narrow single electron spin resonance (ESR) line agent, triarylmethyl, tris(8-carboxy-2,2,6,6-tetrahydroxyethylbenzo[1,2-d:4,5-d′] bis(1,3)dithiole-4-yl)methyl sodium salt (TAM OX063), pulsed longitudinally detected ESR (LODESR) measurements of a phantom or the chest of a living mouse at the operating frequency of ca. 300 MHz were taken and the effective longitudinal relaxation time (T *1 ) was estimated for oximetry. Under irradiation of a pair of π-pulses with a variable interval between pulses (τ), in-phase LODESR signal intensities were obtained from the phantoms containing TAM dissolved in a physiological saline solution at a concentration of 1 mM and various concentrations of oxygen. TheT *1 of the phantom was calculated from the plotted curve of the LODESR signal intensity against τ. It was found that the reciprocal ofT *1 , i.e., the longitudinal relaxation rate, increased with the concentration of oxygen. In vivo pulsed LODESR measurements of the chest of living mice that had received a TAM injection via the intraperitoneal route were made. While the LODESR measurements were being made, the mice in one group breathed normal air and those in another group breathed 100% oxygen. It was found that the longitudinal relaxation rate of the mice breathing 100% oxygen was significantly greater than that of mice breathing normal air, indicating that breathing 100% oxygen elevates the thoracic longitudinal relaxation rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Swartz H.M., Clarkson R.B.: Phys. Med. Biol.43, 1957–1975 (1998)

    Article  Google Scholar 

  2. Hyde J.S., Subcynski W.K. in: Biological Magnetic Resonance (Berliner L.J., Reuben J., eds.), vol. 8, pp. 399–425. New York: Plenum 1989.

    Google Scholar 

  3. Halpern H., Peric M., Nguyen T., Spencer D.P., Teicher B., Lin Y., Bowman M.: J. Magn. Reson.90, 40–51 (1990)

    Google Scholar 

  4. Smirnova T.I., Smirnov A.I., Clarkson R.B., Belford R.L.: Magn. Reson. Med.33, 801–810 (1995)

    Article  Google Scholar 

  5. Velan S.S., Spencer R.G.S., Zweier J.L., Kuppusamy P.: Magn. Reson. Med.43, 804–809 (2000)

    Article  Google Scholar 

  6. Robinson R., Mailer C., Reese A.W.: J. Magn. Reson.138, 199–209 (1999)

    Article  ADS  Google Scholar 

  7. Schweiger A., Ernst R.R.: J. Magn. Reson.77, 512–523 (1988)

    Google Scholar 

  8. Colligiani A., Leporini D., Lucchesi M., Martinelli M. in: Electron Magnetic Resonance of Disorder Systems (Yordanov N.D., ed.), pp. 16–37. Singapore: World Scientific 1991.

    Google Scholar 

  9. Nicholson I., Robb F.J.L., Lurie D.J.: J. Magn. Reson. B104, 284–288 (1994)

    Article  Google Scholar 

  10. Yokoyama H., Sato T., Tsuchihashi N., Ogata T., Ohya-Nishiguchi H., Kamada H.: Magn. Reson. Imaging15, 701–708 (1997)

    Article  Google Scholar 

  11. Yokoyama H., Sato T., Ogata T., Ohya-Nishiguchi H., Kamada H.: J. Magn. Reson. B129, 201–206 (1997)

    Article  ADS  Google Scholar 

  12. Yokoyama H., Sato T., Ogata T., Ohya-Nishiguchi H., Kamada H.: Magn. Reson. Mater. Phys.7, 63–68 (1998)

    Google Scholar 

  13. Sato T., Yokoyama H., Ogata T., Ohya-Nishiguchi H., Kamada H.: Appl. Magn. Reson.16, 33–43 (1999)

    Article  Google Scholar 

  14. Yokoyama H., Sato T., Fukui K., Ohya-Nishiguchi H., Kamada H.: Chem. Lett.1999, 919–920.

  15. Panagiotelis I., Nicholson I., Hutchison J.M.S.: J. Magn. Reson.149, 74–84 (2001)

    Article  ADS  Google Scholar 

  16. Granwehr J., Forrer J., Schweiger A.: J. Magn. Reson.151, 78–84 (2001)

    Article  ADS  Google Scholar 

  17. Granwehr J., Schweiger A.: Appl. Magn. Reson.20, 137–150 (2001)

    Article  Google Scholar 

  18. Ardenkjær-Larsen J.H., Lausen I., Leunbach I., Ehnholm G., Wistrand L.G., Petersson J.S., Golman K.: J. Magn. Reson.133, 1–12 (1998)

    Article  ADS  Google Scholar 

  19. Bloch F.: Phys. Rev.70, 460–474 (1946)

    Article  ADS  Google Scholar 

  20. Yong L., Harbridge J., Quine R.W., Rinard G.A., Eaton S.S., Eaton G.R., Mailer C., Barth E., Halpern H.J.: J. Magn. Reson.152, 156–161 (2001)

    Article  ADS  Google Scholar 

  21. Ito T., Yokoyama H., Sato T., Ogata T.: Appl. Magn. Reson.21, 97–103, (2001)

    Article  Google Scholar 

  22. Ono M., Ogata T., Hsieh K., Suzuki M., Yoshida E., Kamada H.: Chem. Lett.1986, 491–494.

  23. Bell G.H., Emslie-Smith D., Paterson C.L.: Textbook of Physiology. New York: Churchill Livingstone 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yokoyama, H., Sato, T., Nicholson, I. et al. In vivo oximetry by a pulsed longitudinally detected ESR spectrometer. Appl. Magn. Reson. 25, 79–93 (2003). https://doi.org/10.1007/BF03166968

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03166968

Keywords

Navigation