Skip to main content
Log in

Vector model of electron spin echo envelope modulation due to nuclear hyperfine and zeeman interactions

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The transverse electron spin magnetization of a paramagnetic center with effective spinS=1/2 interacting with nonquadrupolar nuclei may be presented as a function of pairs of nuclei magnetization vectors which precess around the effective magnetic field directions. Each vector of the pair starts its precession perpendicular to both effective fields. The free induction decay (FID) signal is proportional to the scalar product of the vectors for nuclear spinI=1/2. The electron spin echo (ESE) signal can be described with two pairs of magnetization vectors. The ESE shape is not equal to two back-to-back FID signals except in the absence of ESE envelope modulation. A recursion relation is obtained which allows calculation of ESE signals for larger nuclear spins in the absence of nuclear quadrupole interaction. This relation can be used to calculate the time course of the ESE signal for arbitrary nuclear spins as a function of the nuclear magnetization vectors. While this formalism allows quantitative calculation of modulation from nuclei, it also provides a qualitative means of visualizing the modulation based on simple magnetization vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Salikhov K.M., Semenov A.G., Tsvetkov Yu.D.: Electron Spin Echo and Its Applications. Novosibirsk: Nauka 1976.

    Google Scholar 

  2. Kevan L. in: Time Domain Electron Spin Resonance (Kevan L., Schwartz R.N., eds.), p. 279. New York: Wiley 1979.

    Google Scholar 

  3. Dikanov S.A., Tsvetkov Yu.D.: Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy. Boca Raton, Fla.: CRC Press 1992.

    Google Scholar 

  4. Schweiger A., Jeschke G.: Principles of Pulse Electron Paramagnetic Resonance, Oxford: Oxford University Press 2001.

    Google Scholar 

  5. Abragam A.: Principles of Nuclear Magnetism. Oxford: Clarendon Press 1961.

    Google Scholar 

  6. Rowan L.G., Hahn E.L., Mims W.B.: Phys. Rev. A61, 137 (1965)

    Google Scholar 

  7. Maryasov A.G., Tsvetkov Yu.D.: Appl. Magn. Reson.18, 583 (2000)

    Article  Google Scholar 

  8. Maryasov A.G., Bowman M.K., Tsvetkov Yu.D. in: Proceedings of the 6th Voevodsky Conference, July 21–25, 2002, Novosibirsk, Russia, p. 167 (2002)

  9. Ernst R.R., Bodenhausen G., Wokaun A.: Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Oxford: Clarendon Press 1987.

    Google Scholar 

  10. Zhidomirov G.M., Salikhov K.M.: Teor. Eksp. Khim.4, 514 (1968)

    Google Scholar 

  11. Salikhov K.M., Schneider D.J., Saxena S., Freed J.H.: Chem. Phys. Lett.262, 17 (1996)

    Article  ADS  Google Scholar 

  12. Messiah A.: Quantum Mechanics. Mineola, N.Y.: Dover Publications 1999.

    Google Scholar 

  13. Isoya J., Bowman M.K., Norris J.R., Weil J.A.: J. Chem. Phys.78, 1735 (1983)

    Article  ADS  Google Scholar 

  14. Shubin A.A.: Ph.D. thesis, Institute of Chemical Kinetics and Combustion, Novosibirsk, USSR, 1984.

  15. Dikanov S.A., Shubin A.A., Parmon V.N.: J. Magn. Reson.42, 474 (1981)

    Google Scholar 

  16. Ponti A.: J. Magn. Reson.127, 87 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maryasov, A.G., Bowman, M.K. & Tsvetkov, Y.D. Vector model of electron spin echo envelope modulation due to nuclear hyperfine and zeeman interactions. Appl. Magn. Reson. 23, 211–233 (2002). https://doi.org/10.1007/BF03166196

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03166196

Keywords

Navigation