Skip to main content
Log in

Monitoring of gene transfer for cancer therapy with radioactive isotopes

  • Review
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Scholer HJ. Flucytosine. in: Speller DCE (ed.),Antifungal Chemotherapy. John Wiley & Sons Chichester, New York, pp. 35–106, 1980.

    Google Scholar 

  2. Polak A, Eschenhof E, Fernex M, Scholer HJ. Metabolic studies with 5-fluorocytosine-6-14C in mouse, rat, rabbit, dog and man.Chemotherapy 22: 137–153, 1976.

    Article  PubMed  CAS  Google Scholar 

  3. Koechlin BA, Rubio F, Palmer S, Gabriel T, Duschinsky R. The metabolism of 5-fluorocytosine-2-14C and of cytosine-1-14C in the rat and the disposition of 5-fluorocytosine-2-14C in man.Biochem Pharmac 15: 435–446, 1966.

    Article  CAS  Google Scholar 

  4. Myers CE. The pharmacology of the fluoropyrimidines.Pharmacological Reviews 33: 1–15, 1981.

    PubMed  CAS  Google Scholar 

  5. Nishiyama T, Kawamura Y, Kawamoto K, Matsumura H, Yamamoto N, Ito T, et al. Antineoplastic effects of 5-fluorocytosine in combination with cytosine deaminase capsules.Cancer Res 45: 1753–1761, 1985.

    PubMed  CAS  Google Scholar 

  6. Wallace PM, MacMaster JF, Smith VF, Kerr DE, Senter PD, Cosand WL. Intratumoral generation of 5-fluorouracil mediated by an antibody-cytosine deaminase conjugate in combination with 5-fluorocytosine.Cancer Res 54: 2719–2723, 1994.

    PubMed  CAS  Google Scholar 

  7. Chen SH, Shine HD, Goodman JC, Grossman RG, Woo SLC. Gene therapy for brain tumors: regression of experimental gliomas by adenovirus-mediated gene transferin vivo.Proc Natl Acad Sci USA 91: 3054–3057, 1994.

    Article  PubMed  CAS  Google Scholar 

  8. Borrelli E, Heyman R, Hsi M, Evans RM. Targeting of an inducible toxic phenotype in animal cells.Proc Natl Acad Sci USA 85: 7572–7576, 1988.

    Article  PubMed  CAS  Google Scholar 

  9. Barba D, Hardin J, Sadelain M, Gage FH. Development of anti-tumor immunity following thymidine kinase-mediated killing of experimental brain tumors.Proc Natl Acad Sci USA 91: 4348–4352, 1994.

    Article  PubMed  CAS  Google Scholar 

  10. Moolten FL, Wells JM. Curability of tumors bearing Herpes thymidine kinase genes transferred by retroviral vectors.J Natl Cancer Inst 82: 297–300, 1990.

    Article  PubMed  CAS  Google Scholar 

  11. Caruso M, Panis Y, Gagandeep S, Houssin D, Salzmann JL, Klatzman D. Regression of established macroscopic liver metastases afterin situ transduction of a suicide gene.Proc Natl Acad Sci USA 90: 7024–7028, 1993.

    Article  PubMed  CAS  Google Scholar 

  12. Oldfield EH, Ram Z, Culver KW, Blaese RM, DeVroom HL, Anderson WF. Gene therapy for the treatment of brain tumors using intra-tumoral transduction with the thymidine kinase gene and intravenous ganciclovir.Hum Gene Ther 1: 39–69, 1993.

    Article  Google Scholar 

  13. Culver KW, Ram Z, Walbridge S, et al.In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors.Science 256: 1550–1552, 1992.

    Article  PubMed  CAS  Google Scholar 

  14. Ram Z, Culver WK, Walbridge S, et al.In situ retroviralmediated gene transfer for the treatment of brain tumors in rats.Cancer Res 53: 83–33, 1993.

    PubMed  CAS  Google Scholar 

  15. Keller PM, Fyfe JA, Beauchamp L, et al. Enzymatic phosphorylation of acyclic nucleoside analogs and correlations with antiherpetic activities.Biochem Pharmacol 30: 3071–3077, 1981.

    Article  PubMed  CAS  Google Scholar 

  16. Huber BE, Austin EA, Good SS, Knick VC, Tibbels S, Richards CA.In vivo antitumor activity of 5-fluorocytosine on human colorectal carcinoma cells genetically modified to express cytosine deaminase.Cancer Res 53: 4619–4626, 1993.

    PubMed  CAS  Google Scholar 

  17. Mullen CA, Kilstrup M, Blaese M. Transfer of the bacterial gene for cytosine deaminase to mammalian cells confers lethal sensitivity to 5-fluorocytosine: a negative selection system.Proc Natl Acad Sci USA 89: 33–37, 1992.

    Article  PubMed  CAS  Google Scholar 

  18. Mullen CA, Coale MM, Lowe R, Blaese RM. Tumors expressing the cytosine deaminase suicide gene can be eliminatedin vivo with 5-fluorocytosine and induce protective immunity to wild type tumor.Cancer Res 54: 1503–1506, 1994.

    PubMed  CAS  Google Scholar 

  19. Haberkorn U, Oberdorfer F, Gebert J, et al. Monitoring of gene therapy with cytosine deaminase:in vitro studies using3H-5-fluorocytosine.J Nucl Med 37: 87–94, 1996.

    PubMed  CAS  Google Scholar 

  20. Visser GWM, Boele S, Knops GHJN, Herscheid JDM, Hoekstra A. Synthesis and biodistribution of (18F)-5-fluorocytosine.Nucl Med Comm 6: 455–459, 1985.

    Article  CAS  Google Scholar 

  21. Monclus M, Luxen A, Van Naemen J, et al. Development of PET radiopharmaceuticals for gene therapy: synthesis of 9-((l-(18F)fiuoro-3-hydroxy-2-propoxy)methyl)guanine.J Label Comp Radiopharm 37: 193–195, 1995.

    Google Scholar 

  22. Haberkorn U, Oberdorfer F, Klenner T, et al. Metabolie and transcriptional changes in osteosarcoma cells treated with chemotherapeutic drugs.Nucl Med Biol 21: 835–845, 1994.

    Article  PubMed  CAS  Google Scholar 

  23. Haberkorn U, Strauss LG, Dimitrakopoulou A, et al. Fluorodeoxyglucose imaging of advanced head and neck cancer after chemotherapy.J Nucl Med 34: 12–17, 1993.

    PubMed  CAS  Google Scholar 

  24. Rozenthal JM, Levine RL, Nickles RJ, Dobkin JA. Glucose uptake by gliomas after treatment.Arch Neurol 46: 1302–1307, 1989.

    Google Scholar 

  25. Bergstrom M, Muhr C, Lundberg PO, Bergstrom K, Gee AD, Fasth KJ, Langstrom B. Rapid decrease in amino acid metabolism in prolactin-secreting pituitary adenomas after bromocriptine treatment: a PET study.J Comput Assist Tomogr 11: 815–819, 1987.

    Article  PubMed  CAS  Google Scholar 

  26. Sobol RE, et al. Interleukin-2 gene therapy in a patient with glioblastoma.Gene Ther 2: 164–167, 1995.

    PubMed  CAS  Google Scholar 

  27. Izquierdo M, et al. Long-term rat survival after malignant brain tumour regression by retroviral gene therapy.Gene Ther 2: 66–69, 1995.

    PubMed  CAS  Google Scholar 

  28. Maron A, et al. Gene therapy of rat C6 glioma using adenovirus-mediated transfer of the Herpes Simplex Virus thymidine kinase gene: long-term follow up by magnetic resonance imaging.Gene Ther 3: 315–322, 1996.

    PubMed  CAS  Google Scholar 

  29. Haberkorn U, Bellemann ME, Altmann A, Gerlach L, Morr I, Oberdorfer F, et al. F-18-fluoro-2-deoxyglucose uptake in rat prostate adenocarcinoma during chemotherapy with 2′,2′-difluoro-2′-deoxycytidine.J Nucl Med 38: 1215–1221, 1997.

    PubMed  CAS  Google Scholar 

  30. Wahl RL, et al. Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evaluation.J Clin Oncol 11: 2101–2111, 1993.

    PubMed  CAS  Google Scholar 

  31. Christman D, Crawford EJ, Friedkin M, Wolf AP. Detection of DNA synthesis in intact organisms with positronemitting (methyl-11C)thymidine.Proc Natl Acad Sci USA 69: 988–992, 1972.

    Article  PubMed  CAS  Google Scholar 

  32. Shields AF, et al. Utilization of labeled thymidine in DNA synthesis: studies for PET.J Nucl Med 31: 337–342, 1990.

    PubMed  CAS  Google Scholar 

  33. Haberkorn U, Altmann A, Morr I, Germann C, Oberdorfer F, van Kaick G. Multi tracer studies during gene therapy of hepatoma cells with HSV thymidine kinase and ganciclovir.J Nucl Med 38: 1048–1054, 1997.

    PubMed  CAS  Google Scholar 

  34. Haberkom U, Altmann A, Morr I, et al. Gene therapy with Herpes Simplex Virus thymidine kinase in hepatoma cells: uptake of specific substrates.J Nucl Med 38: 287–294, 1997.

    Google Scholar 

  35. Haberkorn U, Morr I, Oberdorfer F, et al. Fluorodeoxyglucose uptakein vitro: aspects of method and effects of treatment with gemcitabine.J Nucl Med 35: 1842–1850, 1994.

    PubMed  CAS  Google Scholar 

  36. Haberkorn U, Reinhardt M, Strauss LG, et al. Metabolic design of combination therapy: Use of enhanced fluorodeoxyglucose uptake caused by chemotherapy.J Nucl Med 33: 1981–1987, 1992.

    PubMed  CAS  Google Scholar 

  37. Wertheimer E, Sasson S, Cerasi E, Ben-Neriah Y. The ubiquitous glucose transporter GLUT-1 belongs to the glucose-regulated protein family of stress-inducible proteins.Proc Natl Acad Sci USA 88: 2525–2529, 1991.

    Article  PubMed  CAS  Google Scholar 

  38. Widnell CC, Baldwin SA, Davies A, Martin S, Pasternak CA. Cellular stress induces a redistribution of the glucose transporter.FASEB J 4: 1634–1637, 1990.

    PubMed  CAS  Google Scholar 

  39. Pasternak CA, Aiyathurai JEJ, Makinde V, et al. Regulation of glucose uptake by stressed cells.J Cell Physiol 149: 324–331, 1991.

    Article  PubMed  CAS  Google Scholar 

  40. Clancy BM, Czech MP. Hexose transport stimulation and membrane redistribution of glucose transporter isoforms in response to cholera toxin, dibutyryl cyclic AMP, and insulin in 3T3 adipocytes.J Biol Chem 265: 12434–12443, 1990.

    PubMed  CAS  Google Scholar 

  41. Haberkorn U, Bellemann ME, Gerlach L, Morr I, Trojan H, Brix G, et al. Uncoupling of 2-fluoro-2-deoxyglucose transport and phosphorylation in rat hepatoma during gene therapy with HSV thymidine kinase.Gene Ther 5: 880–887, 1998.

    Article  PubMed  CAS  Google Scholar 

  42. Haberkorn U, Khazaie K, Morr I, Altmann A, Müller M, van Kaick G. Ganciclovir uptake in human mammary carcinoma cells expressing Herpes Simplex Virus thymidine kinase.Nucl Med Biol 25: 367–373, 1998.

    Article  PubMed  CAS  Google Scholar 

  43. Mahony WB, Domin BA, McConnel RT, Zimmerman TP. Acyclovir transport into human erythrocytes.J Biol Chem 263: 9285–9291, 1988.

    PubMed  CAS  Google Scholar 

  44. Gati WP, Misra HK, Knaus EE, Wiebe LI. Structural modifications at the 2′ and 3′ positions of some pyrimidine nucleosides as determinants of their interaction with the mouse erythrocyte nucleoside transporter.Biochem Pharmacol 33: 3325–3331, 1984.

    Article  PubMed  CAS  Google Scholar 

  45. Price R, Cardie K, Watanabe K. The use of antiviral drugs to image herpes encephalitis.Cancer Res 43: 3619–3627, 1983.

    Google Scholar 

  46. Saito Y, Price R, Rottenberg DA, Fox JJ, Su TL, Watanabe KA, Philipps FA. Quantitative autoradiographic mapping of herpes simplex virus encephalitis with radiolabeled antiviral drug.Science 217: 1151–1153, 1982.

    Article  PubMed  CAS  Google Scholar 

  47. Gambhir SS, Barrio JR, Phelps ME, Iyer M, Namavari M, Satyamurthy N, et al. Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography.Proc Natl Acad Sci USA 96: 2333–2338, 1999.

    Article  PubMed  CAS  Google Scholar 

  48. Alauddin MM, Shahinian A, Kundu RK, Gordon EM, Conti PS. Evaluation of 9-[(3-18F-fluoro-1-hydroxy-2-propoxy)methyl]guanine ([18F]-FHPG)in vitro andin vivo as a probe for PET imaging of gene incorporation and expression in tumors.Nucl Med Biol 26: 371–376, 1999.

    Article  PubMed  CAS  Google Scholar 

  49. Alauddin MM, Conti PS. Synthesis and preliminary evaluation of 9-(4-[18F]-fluoro-3-hydroxymethylbutyl)guanine ([18F]FHBG): a new potential imaging agent for viral infection and gene therapy using PET.Nucl Med Biol 25: 175–180, 1998.

    Article  PubMed  CAS  Google Scholar 

  50. Morin KW, Knaus EE, Wiebe LI. Non-invasive scintigraphic monitoring of gene expression in a HSV-1 thymidine kinase gene therapy model.Nucl Med Commun 18: 599–605, 1997.

    Article  PubMed  CAS  Google Scholar 

  51. Wiebe LI, Morin KW, Knaus EE. Radiopharmaceuticals to monitor gene transferQ.J Nucl Med 41: 79–89, 1997.

    CAS  Google Scholar 

  52. Tjuvajev JG, Stockhammer G, Desai R, Uehara H, Watanabe K, Gansbacher B, Blasberg RG. Imaging the expression of transfected genesin vivo.Cancer Res 55: 6126–6132, 1995.

    PubMed  CAS  Google Scholar 

  53. Tjuvajev JG, Avril N, Oku T, et al. Imaging herpes virus thymidine kinase gene transfer and expression by positron emission tomography.Cancer Res 58: 4333–4341, 1998.

    PubMed  CAS  Google Scholar 

  54. MacLaren DC, Gambhir SS, Satyamurthy N, et al. Repetitive non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals.Gene Ther 6: 785–791, 1999.

    Article  PubMed  CAS  Google Scholar 

  55. Bogdanov A, Petherick P, Marecos E, Weissleder R.In vivo localization of diglycylcysteine-bearing synthetic peptides by nuclear imaging of oxotechnetate transchelation.Nucl Med Biol 24: 739–742, 1997.

    Article  PubMed  CAS  Google Scholar 

  56. Bogdanov A, Simonova M, Weissleder R. Design of metalbinding green fluorescent protein variants.Biochim Biophys Acta 1397: 56–64, 1998.

    PubMed  CAS  Google Scholar 

  57. Weissleder R, Simonova M, Bogdanova A, et al. MR imaging and scintigraphy of gene expression through melanin induction.Radiology 204: 425–429, 1997.

    PubMed  CAS  Google Scholar 

  58. Shields AF, Grierson JR, Dohmen BM, et al. Imaging proliferationin vivo with (F-18)FLT and positron emission tomography.Nature Med 4: 1334–1336, 1998.

    Article  PubMed  CAS  Google Scholar 

  59. Mandell RB, Mandell LZ, Link CJ Jr. Radioisotope concentrator gene therapy using the sodium/iodide symporter gene.Cancer Res 59: 661–668, 1999.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Haberkorn.

Additional information

Based on an invited special lecture at the 39th Annual Meeting of the Japanese Society of Nuclear Medicine, Akita, October 1999.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haberkorn, U. Monitoring of gene transfer for cancer therapy with radioactive isotopes. Ann Nucl Med 13, 369–377 (1999). https://doi.org/10.1007/BF03164929

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03164929

Keywords

Navigation