Skip to main content
Log in

Myocardial glucose metabolism in patients with hypertrophic cardiomyopathy: Assessment by F-18-FDG PET study

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

In an investigation of myocardial metabolic abnormalities in hypertrophic myocardium, the myocardial glucose metabolism was evaluated with F-18-fluorodeoxyglucose (FDG) positron emission tomography (PET) in 32 patients with hypertrophie cardiomyopathy, and the results were compared with those in 9 patients with hypertensive heart disease. F-18-FDG PET study was performed in the fasting and glucose-loading states. The myocardial regional %dose uptake was calculated quantitatively. The average regional %dose uptake in the fasting state in the patients with asymmetric septal hypertrophy and dilated-phase hypertrophie cardiomyopathy was significantly higher than that in the patients with hypertensive heart disease (0.75 ± 0.34%, 0.65 ± 0.25%, and 0.43 ± 0.22%/100 g myocardium, respectively). In contrast, the average %dose uptake in the glucose-loading state in the patients with asymmetric septal hypertrophy and dilated-phase hypertrophie cardiomyopathy was not significantly different from that in patients with hypertensive heart disease (1.17 + 0.49%, 0.80 ± 0.44% and 0.99 ± 0.45%, respectively). The patients with apical hypertrophy had also low %dose uptake in the fasting state (0.38 ± 0.21%) as in the hypertensive heart disease patients, so that the characteristics of asymmetric septal hypertrophy and dilatedphase hypertrophic cardiomyopathy are considered to be high FDG uptake throughout the myocardium in the fasting state. Patients with apical hypertrophy are considered to belong to other disease categories metabolically. F-18-FDG PET study is useful in the evaluation of the pathophysiologic diagnosis of patients with hypertrophie cardiomyopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Henry WL, Clark CE, Epstein SE. Asymmetric septal hypertrophy: echocardiographic identification of the pathognomonic anatomic abnormality of IHSS.Circulation 47: 225–233, 1973.

    PubMed  CAS  Google Scholar 

  2. Maron BJ, Bonow RO III, Cannon RO, Leon MB, Epstein SE. Hypertrophic cardiomyopathy: interrelations of clinical manifestations, pathophysiology and therapy.N Engl J Med 316: 780–789, 844–852, 1987.

    PubMed  CAS  Google Scholar 

  3. Shapiro LM, McKenna WJ. Distribution of ventricular hypertrophy in hypertrophic cardiomyopathy: a two-dimensional echocardiographic study.J Am Coll Cardiol 2: 437–444, 1983.

    PubMed  CAS  Google Scholar 

  4. Yamaguchi H, Ishimura T, Nishiyama S, Nagasaki F, Nakanishi S, Takaku F, et al. Hypertrophic nonobstructive cardiomyopathy with giant negative T waves (apical hypertrophy): ventriculographic and echocardiographic features in 30 patients.Am J Cardiol 44: 401–412, 1979.

    Article  PubMed  CAS  Google Scholar 

  5. Louie EK, Maron BJ. Apical hypertrophic cardiomopathy: clinical and two-dimensional echocardiographic assessment.Ann Intern Med 106: 663–670, 1987.

    PubMed  CAS  Google Scholar 

  6. Nagata S, Park Y, Minamikawa T, Yutani C, Kamiya T, Nishimura T, et al. Thallium perfusion and cardiac enzyme abnormalities in patients with familial hypertrophie cardiomyopathy.Am Heart J 109: 1317–1322, 1985.

    Article  PubMed  CAS  Google Scholar 

  7. Ten Gate FG, Roelandt J. Progression to left ventricular dilatation in patients with hypertrophie obstructive cardiomyopathy.Am Heart J 762–765, 1979.

  8. Spirito P, Maron BJ, Bonow RO, Epstein SE. Occurrence and significance of progressive left ventricular wall thinning and relative cavity dilatation in hypertrophie cardiomyopathy.Am J Cardiol 59: 123–129, 1987.

    Article  Google Scholar 

  9. Nishimura T, Nagata S, Uehara T, Hayashida K, Mitani I, Kumita S. Assessment of myocardial damage in dilatedphase hypertrophie cardiomyopathy by using indium-111-antimyosin Fab myocardial scintigraphy.J Nucl Med 32: 1331–1337, 1991.

    Google Scholar 

  10. Maron BJ, Epstein SE. Hypertrophic cardiomyopathy. Recent observations regarding the specificity of three halfmarks of the disease: asymmetric septal hypertrophy, septal disorganization and systolic anterior motion of the anterior mitral leaflet.Am J Cardiol 45: 141–154, 1980.

    Article  PubMed  CAS  Google Scholar 

  11. Wigle ED, Sasson Z, Henderson MA, Ruddy TD, Fulop J, Rakowski H, et al. Hypertrophic cardiomyopathy. The importance of the site and the extent of hypertrophy. A review.Prog Cardiovasc Dis 28: 1–81, 1985.

    Article  PubMed  CAS  Google Scholar 

  12. Maron BJ, Gottdiener JS, Epstein SE. Patterns and significance of distribution of left ventricular hypertrophy in hypertrophie cardiomyopathy: a wide angle, two dimensional echocardiographic study of 125 patients.Am J Cardiol 48: 418–428, 1981.

    Article  PubMed  CAS  Google Scholar 

  13. Tamaki N, Yonekura Y, Kawamoto M, Nagata Y, Sasayama S, Takahashi N, et al. Simple quantification of regional myocardial uptake of fluorine-18-fluorodeoxyglucose in the fasting condition.J Nucl Med 32: 2152–2157, 1991.

    PubMed  CAS  Google Scholar 

  14. Hecht GM, Klues HG, Roberts WC, Maron BJ. Coexistence of sudden cardiac death and end-stage heart failure in familiar hypertrophie cardiomyopathy.J Am Coll Cardiol 22: 489–497, 1993.

    Article  PubMed  CAS  Google Scholar 

  15. McKenna W, Beanfield J, Farugui A, England D, Oakley C, Goodwin J. Prognosis in hypertrophie cardiomyopathy: role of age and clinical, electrocardiographic and hemodynamics feature.J Cardiol 41: 532–538, 1981.

    Article  Google Scholar 

  16. Roffland MJ, Waldstein DJ, Vus J, J ten Cate F. Prognosis in hypertrophie cardiomyopathy observed in a large clinic population.Am J Cardiol 72: 939–943, 1993.

    Article  Google Scholar 

  17. Maron BJ, Roberts WC, Epstein SE. Sudden death in hypertrophie cardiomyopathy: a profile of 78 patients.Circulation 65: 1388–1394, 1982.

    PubMed  CAS  Google Scholar 

  18. Betocchi S, Bonow RO, Bacharach SL, Rosing DR, Maron BS, Green MV, et al. Isovolumic relaxation period in hypertrophie cardiomyopathy: assessment by radionuclide angiography.J Am Coll Cardiol 7: 74–81, 1986.

    PubMed  CAS  Google Scholar 

  19. Spirito P, Maron BJ. Relation between extent of left ventricular hypertrophy and diastolic filling abnormalities in hypertrophie cardiomyopathy.J Am Coll Cardiol 15: 808–813, 1990.

    PubMed  CAS  Google Scholar 

  20. Bonow RO, Dilsizian V, Rosing DR, Maron BJ, Bacharach SL, Green MV. Verapamil-induced improvement in left ventricular diastolic filling and increased exercise tolerance in patients with hypertrophie cardiomyopathy: shortand long-term effects.Circulation 72: 853–864, 1985.

    PubMed  CAS  Google Scholar 

  21. Grover-McKay M, Schwaiger M, Krivokapich J, Perloff JK, Phelps ME, Schelbert HR, et al. Regional myocardial blood flow and metabolism at rest in mildly symptomatic patients with hypertrophie cardiomyopathy.J Am Coll Cardiol 13: 317–324, 1989.

    Article  PubMed  CAS  Google Scholar 

  22. Nienaber CA, Gambir SS, Mody FV, Ratib O, Huang S, Phelps MZ, et al. Regional myocardial blood flow and glucose utilization in symptomatic patients with hypertrophic cardiomyopathy.Circulation 87: 1580–1590, 1993.

    PubMed  CAS  Google Scholar 

  23. Kagaya Y, Ishide N, Takayama D, Kanno Y, Yamane Y, Shirato K. Differences in myocardial fluoro-deoxyglucose in young and older patients with hypertrophie cardiomyopathy.Am J Cardiol 69: 242–246, 1992.

    Article  PubMed  CAS  Google Scholar 

  24. Shimonagata T, Nishimura T, Uehara T, Hayashida K, Kumita S, Ohno A, et al. Discrepancies between myocardial perfusion and free fatty acid metabolism in patients with hypertrophie cardiomyopathy.Nucl Med Comm 14: 1005–1013, 1993.

    Article  CAS  Google Scholar 

  25. Kurata C, Tawarahara K, Taguchi K, Ashina S, Kobayashi A, Yamazaki N, et al. Dual-tracer autoradiographic study with thallium-201 and radioiodinated fatty acid in cardiomyopathic hamster.J Nucl Med 30: 80–88, 1989.

    PubMed  CAS  Google Scholar 

  26. Tamaki N, Fujibayashi Y, Nagata Y, Yonekura Y, Konishi J. Radionuclide assessment of myocardial fatty acid metabolism by PET and SPECT.J Nucl Cardiol 2: 256–266, 1995.

    Article  PubMed  CAS  Google Scholar 

  27. Nishimura T. Approaches for identity and characterize hypertrophie myocardium.J Nucl Med 34: 1013–1019, 1993.

    PubMed  CAS  Google Scholar 

  28. Perrone-Filardi P, Bacharach SL, Dilsizian V, Panza JA, Maurea S, Bonow RO, et al. Regional systolic function, myocardial blood flow and glucose uptake at rest in hypertrophie cardiomyopathy.Am J Cardiol 72: 199–204, 1993.

    Article  PubMed  CAS  Google Scholar 

  29. Pither D, Wainwright R, Maisey M, Curry P, Lowton E. Assessment of chest pain in hypertrophie cardiomyopathy using exercise thallium-201 myocardial scintigraphy.Br Heart J 44: 650–655, 1980.

    Article  Google Scholar 

  30. Cannon RO III, Dilsizian V, O’Gara PT, Underson JE, Schenke BA, Quyyumi A, et al. Myocardial metabolic, hemodynamic, and electrocardiographic significance of reverse thallium-201 abnormalities in hypertrophie cardiomyopathy.Circulation 83: 1660–1667, 1991.

    PubMed  Google Scholar 

  31. O’Gara PT, Bonow RO, Maron BJ, Damske BA, Lingen AV, Bacharach SL, et al. Myocardial perfusion abnormalities in patients with hypertrophie cardiomyopathy: Assessment with Thallium-201 emission-computed tomography.Circulation 76: 1214–1223, 1987.

    PubMed  Google Scholar 

  32. Maron BJ, Epstein SE, Roberts WC. Hypertrophic cardiomyopathy and transmural myocardial infarction without significant atherosclerosis of the extramural coronary arteries.Am J Cardiol 43: 1086–1102, 1979.

    Article  PubMed  CAS  Google Scholar 

  33. Maron BJ, Wolfson JK, Epstein SE, Robert WC. Intermural (“small vessel”) coronary artery disease in hypertrophic cardiomyopathy.J Am Coll Cardiol 8: 545–557, 1986.

    Article  PubMed  CAS  Google Scholar 

  34. Opherk D, Mall G, Zebe H, Schwarz F, Weihe E, Manthery J, et al. Reduction of coronary reserve: a mechanism for angina pectoris in patients with arterial hypertention and normal coronary arteries.Circulation 69: 1–7, 1984.

    PubMed  CAS  Google Scholar 

  35. Cannon RO, Rosing DR, Maron BJ, Leon MB, Bonow RO, Watson RW, et al. Myocardial ischemia in patients with hypertrophie cardiomyopathy: contribution of inadequate vasodilator reserve and elevated left ventricular filling pressures.Circulation 71: 234–243, 1985.

    PubMed  Google Scholar 

  36. Marcus ML, Koyanagi S, Harrison CJ, Doty DB, Hiratzka LF, Eastham CL. Abnormalities in the coronary circulation that occur as a consequence of cardiac hypertrophy.Am J Med 75: 62–66, 1983.

    Article  PubMed  CAS  Google Scholar 

  37. Camici P, Chrisatti G, Lorenzoni R, Bellina R, Gistri R, Italiani G, et al. Coronary vasodilation is impaired in both hypertrophied and nonhypertrophied myocardium of patients with hypertrophie cardiomyopathy: A study with nitrogen-13 ammonia and positron emission tomography.J Am Coll Cardiol 17: 879–886, 1991.

    Article  PubMed  CAS  Google Scholar 

  38. Hoffman EJ, Huang SC, Phelps ME. Quantitation in Positron Emission Computed Tomography: 1. Effect of Object Size.J Comput Assist Tomogr 3: 299–308, 1979.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsunehiko Nishimura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uehara, T., Ishida, Y., Hayashida, K. et al. Myocardial glucose metabolism in patients with hypertrophic cardiomyopathy: Assessment by F-18-FDG PET study. Ann Nucl Med 12, 95–103 (1998). https://doi.org/10.1007/BF03164836

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03164836

Key words

Navigation