Skip to main content
Log in

Radio-frequency muon spin resonance (RFμSR) experiments on condensed matter

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

In this paper we present an overview of the radio-frequency muon spin resonance (RFμSR) technique, an analogue to continuous-wave NMR, and an introduction to time-integral (TI) and time-differential (TD) RFμSR on muons in diamagnetic or in paramagnetic environments. The general form of the resonance line for TI-RFμSR as well as the expression for the time-dependence of the longitudinal muon spin polarization at resonance are given. Since RFμSR does not require phase coherence of the muon spin ensemble, this technique allows us to investigate muon species that are generated by transitions from, or in the course of reactions of, a precursor muon species even if in transverse-field (TF) μSR measurements the signal is lost due to dephasing. This ability of RFμSR is clearly demonstrated by measurements on doped Si. In this example, at low temperatures, a very pronounced signal from a muon species in diamagnetic environment has been found in RFμSR measurements, whereas in TFμSR experiments only a very small signal from muons in diamagnetic environment could be detected and a large fraction of the implanted muons escaped detection. These findings could be interpreted in terms of the delayed formation of a diamagnetic muonium-dopant complex, and, due to the large diamagnetic RFμSR signal, the RFμSR technique is a unique tool to study how the variation of parameters and experimental conditions such as illumination affects formation and behavior of these complexes. First results obtained on illuminated boron doped Si are reported. However, as illustrated by the example of experiments on the muonated radical in solid C60, results from conventional TI-RFμSR cannot always be interpreted unambiguously since different parameters, namely the fraction of muons forming the investigated muon species, the longitudinal and the transverse relaxation rates, have similar effects on height and shape of the RFμSR resonance line. These ambiguities, however, may be resolved by collecting time-differential data. With this extension RFμSR becomes a very powerful complementary method to TFμSR in the studies of dynamic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Patterson B.D.: Rev. Mod. Phys.60, 69–159 (1988)

    Article  ADS  Google Scholar 

  2. Gorelkinskii Yu.V., Nevinnyi N.N.: Sov. Tech. Phys. Lett.13, 45–46 (1987)

    Google Scholar 

  3. Coffin T., Garwin R.L., Penman S., Lederman L.M., Sachs A.M.: Phys. Rev.,109, 973–979 (1958)

    Article  ADS  Google Scholar 

  4. Kitaoka Y., Takigawa M., Yasuoka H., Itoh M., Takagi S., Kuno Y., Nishiyama K., Hayano R.S., Uemura Y.J., Imazato J., Nakayama H., Nagamine K., Yamazaki T.: Hyp. Int.12, 51–57 (1982)

    Article  ADS  Google Scholar 

  5. Nishiyama K., Morozumi Y., Suzuki T., Nagamine K.: Phys. Lett.111, 369–372 (1985)

    Article  Google Scholar 

  6. Morozumi Y., Nishiyama K., Nagamine K.: Phys. Lett. A118, 93–97 (1986)

    Article  ADS  Google Scholar 

  7. Azuma T., Nishiyama K., Nagamine K., Ito Y., Tabata Y.: Hyp. Int.32, 837–843 (1986)

    Article  ADS  Google Scholar 

  8. Ishida K., Matsuzaki T., Nishiyama K., Nagamine K., Miyake Y., Tabata Y., Ito Y.: Hyp. Int.19, 933–938 (1984)

    Article  ADS  Google Scholar 

  9. Nishiyama K., Morozumi Y., Suzuki T., Nagamine K.: Phys. Lett.111, 369–372 (1985)

    Article  Google Scholar 

  10. Majer G., Messer R., Seeger A., Templ W., Fürderer K., Gladisch M., Herlach D.: Phil. Mag. Lett.57, 57–61 (1988)

    Article  ADS  Google Scholar 

  11. Hampele M., Herlach D., Kratzer A., Majer G., Major J., Raich H.-P., Roth R., Scott C.A., Seeger A., Templ W., Blanz M., Cox S.F.J., Fürderer K.: Hyp. Int.65, 1081–1088 (1990)

    Article  ADS  Google Scholar 

  12. Kreitzman S.R.: Hyp. Int.65, 1055–1070 (1990)

    Article  ADS  Google Scholar 

  13. Nishiyama K., Matsushita A., Nagamine K. in: Proc. 21st Int. Conf. Phys. Semicond. Beijing, China, August 10–14, 1992 (Jiang P., ed.), pp. 1872–1875. Singapore: World Scientific 1992.

  14. Kreitzman S.R., Hitti B., Lichti R.L., Estle T.L., Chow K.H.: Phys. Rev. B51, 13117–13137 (1995)

    Article  ADS  Google Scholar 

  15. Scheuermann R., Schimmele L., Seeger A., Stammler Th., Grund Th., Hampele M., Herlach D., Iwanowski M., Major J., Notter M., Pfiz Th.: Phil. Mag. B72, 161–181 (1995)

    Google Scholar 

  16. Scheuermann R., Schimmele L., Schmidl J., Seeger A., Stammler Th., Haller E.E., Herlach D., Major J.: Hyp. Int.105, 357–362 (1997)

    Article  ADS  Google Scholar 

  17. Brandt E.H., Messer R.: Phys. Status Solidi B144, 343–350 (1987)

    Article  Google Scholar 

  18. Nishiyama K. in: Perspectives of Meson Science (Yamazaki T., Nakai K., Nagamine K., eds.), pp. 199–218. Amsterdam: North-Holland 1992.

    Google Scholar 

  19. Hughes V.W., Kinoshita T.: Muon Physics I (Hughes V.W., Wu C.S., eds.), p. 86. New York: Academic Press 1977.

    Google Scholar 

  20. Slichter C.P.: Principles of Magnetic Resonance, 3rd ed., p. 217. Berlin: Springer 1990.

    Google Scholar 

  21. Nosov V.G., Yakovleva I.V.: Sov. Phys. JETP16, 1236–1246 (1963)

    ADS  Google Scholar 

  22. Brewer J.H., Crowe K.M., Gygax F.N., Schenck A. in: Muon Physics III (Hughes V.W., Wu C.S., eds.), p. 33. New York: Academic Press 1975.

    Google Scholar 

  23. Hampele M., Kratzer A., Maier K., Major J., Münch K.-H., Pfiz Th.: Hyp. Int.87, 1043–1047 (1994)

    Article  ADS  Google Scholar 

  24. Scheuermann R., Schmidl J., Seeger A., Stammler Th., Herlach D., Major J.: Hyp. Int.106, 295–300 (1997)

    Article  ADS  Google Scholar 

  25. Seeger A., Hampele M., Herlach D., Maier K., Major J., Roth R., Templ W.: ISIS Annual Report 1991, A324. Chilton: Council for the Central Laboratories of the Research Councils, Rutherford Appleton Laboratory 1991.

    Google Scholar 

  26. Seeger A., Schimmele L., Hampele M., Herlach D., Iwanowski M., Maier K., Major J., Pfiz Th., Templ W.: ISIS Annual Report 1992, A363. Chilton: Council for the Central Laboratories of the Research Councils, Rutherford Appleton Laboratory 1992.

    Google Scholar 

  27. Seeger A., Schimmele L., Hampele M., Herlach D., Iwanowski M., Maier K., Major J., Pfiz Th., Templ W.: ISIS Annual Report 1992, A364. Chilton: Council for the Central Laboratories of the Research Councils, Rutherford Appleton Laboratory 1992.

    Google Scholar 

  28. Iwanowski M., Maier K., Major J., Pfiz Th., Scheuermann R., Schimmele L., Seeger A., Hampele M.: Hyp. Int.86, 681–686 (1994)

    Article  ADS  Google Scholar 

  29. Kadono R., Matsushita A., Macrae R.M., Kishiyama K., Nagamine K.: Phys. Rev. Lett.73, 2724–2727 (1994)

    Article  ADS  Google Scholar 

  30. Cox S.F.J., Chow K.H., Cottrell S.P., Estle T.L., Lichti R.L., Schwab C.R.: ISIS Annual Report 1996, A526. Chilton: Council for the Central Laboratories of the Research Councils, Rutherford Appleton Laboratory 1996.

    Google Scholar 

  31. Zundel T., Weber J.: Phys. Rev. B43, 4361–4372 (1991)

    Article  ADS  Google Scholar 

  32. Seager C.H., Anderson R.A.: Appl. Phys. Lett.59, 585–587 (1991)

    Article  ADS  Google Scholar 

  33. Ansaldo E.J., Niedermayer C., Stronach C.E.: Nature353, 121 (1991)

    Article  ADS  Google Scholar 

  34. Kiefl R.F., Schneider J.W., MacFarlane A., Chow K., Duty T.L., Estle T.L., Hitti B., Lichti R.L., Ansaldo E.J., Schwab C., Percival P.W., Wei G., Wlodek S., Kojima K., Romanow W.J., McCauley J.P., Coustel N., Fischer J.E., Smith A.B.: Phys. Rev. Lett.68, 2708–2712 (1992)

    Article  ADS  Google Scholar 

  35. Kiefl R.F., Duty T.L., Schneider J.W., MacFarlane A., Chow K., Elzey J.W., Mendels P., Morris G.D., Brewer J.H., Ansaldo E.J., Niedermayer C., Noakes D.R., Stronach C.E., Hitti B., Fischer J.E.: Phys. Rev. Lett.69, 2005–2008 (1992)

    Article  ADS  Google Scholar 

  36. Percival P.W., Wlodek S.: Chem. Phys. Lett.196, 317–320 (1992)

    Article  ADS  Google Scholar 

  37. Roduner E., Prassides K., Macrae R.M., Thomas I.M., Niedermayer C., Binninger U., Bernhard C., Hofer A., Reid I.D.: Chem. Phys.192, 231–237 (1995)

    Article  Google Scholar 

  38. Duty T.L., Brewer J.H., Chow K., Kiefl R.F., MacFarlane A.W., Morris G.D., Schneider J.W., Hitti B., Lichti R., Brard L., Fischer J.E., Smith A.B., Strongin R.M.: Hyp. Int.86, 789–795 (1994)

    Article  ADS  Google Scholar 

  39. Tycko R., Dabbagh G., Fleming R.M., Haddon R.C., Makhija A.V., Zahurak S.M.: Phys. Rev. Lett.67, 1886–1889 (1991)

    Article  ADS  Google Scholar 

  40. David W.I.F., Ibberson R.M., Dennis T.J.S., Hare J.P., Prassides K.: Europhys. Lett.18, 219–225 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheuermann, R., Schimmele, L., Schmidl, J. et al. Radio-frequency muon spin resonance (RFμSR) experiments on condensed matter. Appl. Magn. Reson. 13, 195–217 (1997). https://doi.org/10.1007/BF03161981

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03161981

Keywords

Navigation