Skip to main content
Log in

Methane and carbon dioxide dynamics inTypha Latifolia (L.) wetlands in central New York state

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

I examined differences in the biogeochemical cycles of CH4 and CO2 (fluxes, concentrations, production, CH4 oxidation) inTypha latifolia wetlands on silty clay sediment versus organic peat soil in central New York State to determine whether variation in the amount of organic matter in sediment or soil, or plant production on sites with different organic matter content, affected variation in CH4 and CO2. I found very high temporal variation in CH4 within each site, precluding the detection of variation in CH4 as a function of sediment or soil organic matter content. In 1994. CH4 efflux from two peat sites to the atmosphere averaged 7 and 87 nmol m−2s−1 compared to 89 and 408 nmol m−2s−1 compared to 1.02 and 1.65 μmol m−2s−1 for the sediment sites. I assessed the role of plant production by experimentally removingT. latifolia shoots from small plots: this lowered CH4 efflux from the sediment site by 85%, suggesting that plants foster CH4 production in low organic matter sediment, but CH4 efflux was 14-times greater following shoot removal on one peat site. Shoot removal had no effect on CO2 efflux. Variations in temperature, dissolved organic carbon, and pCH4 in sediment or soil porewater explained the variation in CH4 efflux among the four study sites, whereas variation in net primary production explained the variation in CO2 efflux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Anderson, J. P. E. and K. H. Domsch. 1978. A physiologically active method for the quantitative measurement of microbial biomass in soil. Soil Biology and Biochemistry 10:215–221.

    Article  CAS  Google Scholar 

  • Bartlett, K. B. and R. C. Harriss. 1993 Review and assessment of methane emissions from wetlands. Chemosphere 26:261–320.

    Article  CAS  Google Scholar 

  • Bendix, M., T. Tornbjerg and H. Brix. 1994. Internal gas transport inTypha latifolia L. andTypha angustifolia L. 1. Humidity-induced pressurization and convective throughflow. Aquatic Botany 49:75–89.

    Article  Google Scholar 

  • Boon, P. I. and B. K. Sorrell. 1995. Methane fluxes from an Australian floodplain wetland: the importance of emergent macrophytes. Journal of the North American Benthological Society 14:582–598.

    Article  Google Scholar 

  • Bubier, J. L. and T. R. Moore. 1994. An ecological perspective on methane emissions from northern wetlands. Trends in Ecology & Evolution 9:460–464.

    Article  Google Scholar 

  • Chanton, J. P. and J. W. H. Dacey. 1991. Effects of vegetation on methane flux, reservoirs, and carbon isotope composition. p. 65–92.In. T. Sharkey, E. Holland, and H. Mooney (eds.) Trace Gas Emissions from Plants. Academic Press, San Diego, CA, USA.

    Google Scholar 

  • Chanton, J. P., G. J. Whiting, J. D. Happell and G. Gerard. 1993. Contrasting rates and diurnal patterns of methane emission from emergent macrophytes. Aquatic Botany 46:111–128.

    Article  CAS  Google Scholar 

  • Crill, P. M., R. C., Harriss, and K. B. Bartlett. 1991. Methane fluxes from terrestrial wetland environments. p. 91–109.In J. E. Rogers and W. B. Whitman (eds.) Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes. American Society for Microbiology, Washington, DC, USA.

    Google Scholar 

  • Crill, P. M., P. J. Martikainen, H. Nykanen, and J. Silvola. 1994. Temperature and N fertilization effects on methane oxidation in a drained peatland. Soil Biology and Biochemistry 26:1331–1339.

    Article  CAS  Google Scholar 

  • Crozier, C. R. and R. D. DeLaune. 1996. Methane production by soils from different Louisiana marsh vegetation types. Wetlands 16:121–126.

    Google Scholar 

  • Flett, R. J., R. D. Hamilton, and N. E. R. Campbell. 1976. Aquatic acetylene-reduction techniques: solutions to several problems. Canadian Journal of Microbiology 22:43–51.

    Article  PubMed  CAS  Google Scholar 

  • Groffman, P. M., P. Egan, W. M. Sullivan, and J. L. Lemunyon, 1996. Grass species and soil type effects on microbial biomass and activity. Plant and Soil 183:61–67.

    Article  CAS  Google Scholar 

  • Hutchnison, G. L. and G. P. Livingston, 1993. Use of chamber systems to measure trace gases fluxes. p. 63–78.In L. A. Harper and others (eds.) Agricultural Ecosystem Effects on Trace Gases and Global Climate Change, ASA Special Publication No. 55. American Society of Agronomy, Madison, WI, USA.

    Google Scholar 

  • Kaplan, L. A. and J. D. Newbold. 1993. Biogeochemistry of dissolved organic carbon entering streams. p. 139–165In T. E. Ford (ed.) Aquatic Microbiology, an Ecological Approach. Blackwell Scientific Publishers, Oxford, UK.

    Google Scholar 

  • Kelley, C. A., C. S. Martens, and W. Ussler, III. 1995. Methane dynamics across a tidally flooded riverbank margin. Limnology and Oceanography 40:1112–1129.

    Article  CAS  Google Scholar 

  • King, G. M. 1992. Ecological aspects of methane oxidation, a key determinant of global methane dynamics. Advances in Microbial Ecology 12:432–468.

    Google Scholar 

  • King, G. M. 1994. Associations of methanotrophs with roots and rhizomes of aquatic vegetation. Applied and Environmental Microbiology 60:3220–3227.

    PubMed  CAS  Google Scholar 

  • Kristensen, E., S. I. Ahmed, and A. H. Devol. 1995. Aerobic and anaerobic decomposition of organic matter in marine sediments: Which is fastest? Limnology and Oceanography 40:1430–1437.

    Article  CAS  Google Scholar 

  • Mann, C. J. and R. G. Wetzel. 1995. Dissolved organic carbon and its utilization in a riverine wetland ecosystem. Biogeochemistry 31:99–120.

    Article  CAS  Google Scholar 

  • Mooney, H. A., P. M. Vitousek, and P. A. Matson. 1987. Exchange of materials between terrestrial ecosystems and the atmosphere. Science 238:926–932.

    Article  PubMed  CAS  Google Scholar 

  • Morris, J. T. and G. J. Whiting. 1986. Emission of gaseous carbon dioxide from salt-marsh sediments and its relation to other carbon losses. Estuaries 9:9–19.

    Article  CAS  Google Scholar 

  • Prieme, A. 1994. Production and emission of methane in a brackish and freshwater wetland. Soil Biology and Biochemistry 26:7–18.

    Article  CAS  Google Scholar 

  • Raich, J. W. and C. S. Potter. 1995. Global patterns of carbon dioxide emissions from soils. Global Biogeochemical Cycles 9:23–36.

    Article  CAS  Google Scholar 

  • Raich, J. W. and W. H. Schlesinger. 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44B:81–99.

    CAS  Google Scholar 

  • Reeburgh, W. S., S. C. Whalen, and M. J. Alpern. 1993. The role of methylotrophy in the global methane budget. p. 1–14.In J. C. Murrell and D. P. Kelley (eds.) Microbial Growth on Cl compounds. Intercept Press Ltd, Andover, UK.

    Google Scholar 

  • Sass, R. L., F. M. Fisher, P. A. Harcombe, and F. T. Turner. 1990. Methane production and emission in a Texas rice field. Global Biogeochemical Cycles 4:47–68.

    Article  CAS  Google Scholar 

  • Schimel, J. P., E. A. Holland, and D. Schimel. 1993. Controls on methane flux from terrestrial ecosystems. p. 167–181.In L. A. Harper and others (eds.) Agricultural Ecosystem Effects on Trace Gases and Global Climate Change, ASA Special Publication No. 55. American Society of Agronomy, Madison, WI, USA.

    Google Scholar 

  • Schlesinger, W. H. 1977. Carbon balance in terrestrial detritus. Annual Review of Ecology and Systematics 8:51–81.

    Article  CAS  Google Scholar 

  • Sebacher, D. I., R. C. Harriss, and K. B. Bartlett. 1985. Methane emissions to the atmosphere through aquatic plants. Journal of Environmental Quality 14:40–46.

    CAS  Google Scholar 

  • Shannon, R. D., J. R. White, J. E. Lawson, and B. S. Gillmour, 1996. Methane efflux from emergent vegetation in peatlands. Journal of Ecology 84:239–246.

    Article  CAS  Google Scholar 

  • Sorrell, B. K. and P. I. Boon. 1992. Biogeochemistry of billabong sediments. II. Seasonal variations in methane production. Freshwater Biology 27:435–445.

    Article  CAS  Google Scholar 

  • Torn, M. S. and F. S. Chapin, III. 1993. Environmental and biotic controls over methane flux from Arctic tundra. Chemosphere 26: 357–368.

    Article  CAS  Google Scholar 

  • Tornbjerg, T., M. Bendix, and H. Brix. 1994. Internal gas transport inTypha latifolia L. andTypha angustifolia L. 2. Convective throughflow pathways and ecological significance Aquatic Botany 49:91–105.

    Article  Google Scholar 

  • Waddington, J. M., N. T. Roulet, and R. V. Swanson. 1996. Water table control of CH4 emission enhancement by vascular plants in boreal peatlands. Journal of Geophysical Research 101:22,775–22,785.

    Article  CAS  Google Scholar 

  • Whiting, G. J. and J. P. Chanton. 1993. Primary production control of methane emissions from wetlands. Nature 364:794–795.

    Article  CAS  Google Scholar 

  • Wieder, R. K. and J. B. Yavitt. 1994. Peatlands and global climate change: Insights from comparative studies of sites situated along a latitudinal gradient. Wetlands 14:229–238.

    Google Scholar 

  • Wilhem, E., R. Battino, and R. J. Wilcock. 1977. Low-pressure solubility of gases in liquid water. Chemical Reviews 77:219–262.

    Article  Google Scholar 

  • Yamamoto, S., J. B. Alcauskas, and T. E. Crozier. 1976. Solubility of methane in distilled water and seawater. Journal of Chemical and Engineering Data 21:78–80.

    Article  CAS  Google Scholar 

  • Yavitt, J. B. 1994. Carbon dynamics in Appalachian peatlands of West Virginia and western Maryland. Water, Air, and Soil Pollution 77:271–290.

    Article  CAS  Google Scholar 

  • Yavitt, J. B. and A. K. Knapp. 1995. Methane emission to the atmosphere through emergent cattail (Typha latifolia L.) plants. Tellus 47B:521–534.

    CAS  Google Scholar 

  • Yavitt, J. B., R. K. Wieder, and G. E. Lang. 1993. CO2 and CH4 dynamics of aSphagnum-dominated peatland in West Virginia. Global Biogeochemical Cycles 7:259–274.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph B. Yavitt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yavitt, J.B. Methane and carbon dioxide dynamics inTypha Latifolia (L.) wetlands in central New York state. Wetlands 17, 394–406 (1997). https://doi.org/10.1007/BF03161429

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03161429

Key Words

Navigation